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Abstract

We formulate multiple-view geometry for omni-directional
and panorama-camera systems. The mathematical formu-
lations enable us to derive the geometrical and algebraic
constraints for multiple panorama-camera configurations.
The constraints permit us to reconstruct three-dimensional
objects for a large feasible region.

1. Introduction

In this paper, we analyze the geometrical configurations of
omni-directional camera systems fulfilling the conditions
for the multiple-view geometry to reduce the number of
constraints for the multiple camera systems. This is the
first step to establish the multiple-view geometry for omni-
directional camera systems as an extension from multiple-
view geometry for pin-hole camera systems to multiple-
view geometry for omni-directional camera systems.

Multiple-view geometry for pin-hole cameras studied in
the computer vision community. The well-known alge-
braic constraints for the multiple-view geometry were in-
troduced, such as epipolar constraints equivalently bilinear
form [1], [2] for stereo views, the trifocal tensor [2], [3] for
three views, the quadrifocal tensor [4], [5] for four views
and the factorization method [6] for multiple views. On
the other hand, T. Svoboda, T. Pajdla and V. Hlavac in-
troduced the geometrical constraint for stereo systems of
omni-directional cameras [7]. Furthermore, T. Sogo, H.
Ishiguro and M. M. Trivedi introduced the multiple omni-
directional camera systems for localization and tracking [8].
They analyzed the combinatorial property of point corre-
spondences for the multiple omni-directional camera sys-
tems and they solved the point correspondences problem
for real-time human tracking which is a NP-hard problem
using their N-ocular stereo camera system. However, three
or more view geometrical constraints are not clearly repre-
sented for the omni-directional cameras. Our aim in this
study is to derive the geometrical and algebraic constraints
for multiple omni-directional cameras.

Recently, T. Sugimura and J. Sato proved [9] that the
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number of algebraic constraints in the trifocal tensor is re-
duced if cameras mutually image their epipoles. This ge-
ometrical condition restricts the geometrical configuration
of pin-hole cameras, because multiple pin-hole camera sys-
tems can not always observe the epipoles of their cam-
eras. Here, we assume omni-directional cameras are lo-
cated parallel on the same plane. These omni-directional
camera systems satisfy the geometrical condition that they
always observe the epipoles of their cameras, because the
omni-directional camera always images the other cameras.
Therefore, Sato’s condition could be achieved with multiple
omni-directional camera systems.

In this study, we first define the panorama-camera model
using the geometrical concept of line camera. Next,
we show the mathematical equivalence of the panorama-
camera model and the hyperbolic-camera model. Finally,
we formulate multiple-view geometry for panorama-camera
systems and derive the geometrical and algebraic con-
straints for multiple panorama-camera configurations.

2. Panoramic Image

A sequence of pin-hole camera images enables us to syn-
thesize a wide view image comparing to the image observed
by a camera. The synthesized image from a sequence of im-
ages is generally called a panoramic image. Since a point
and a line are fundamental elements for imaging, many
camera models could be geometrically constructed from the
two essential elements for imaging. Therefore, we formu-
late a camera model with lines and points for our applica-
tions.

2.1. Line-Camera Model

Definition 1 A line camera is a collection of rays which
pass through a single point on a plane in a space. A line-
camera model consists of a line-camera center which is the
single point, an image line and a camera axis which inter-
sects the line-camera center and is parallel to the image
line.
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We assume that the line-camera center C = (0,0,0)"
is located at the origin of the world coordinate system. For
the line camera axis 7., we set 7. = k(0,0,1)" for k €
R, that is, the direction of 7 is the direction of the z axis.
For the image line I of the line camera on the z-z plane
(y = 0),apoint X = (X,0,Z)" in a space is projected to
the point = (x,0) " on the image line ! according to the
formulation x = f %, where f is the focal length of the line
camera.

Figure 1: A line-camera model.

2.2. Line-Motion Camera Model

The motion of a line camera along the direction of the y
axis yields a collection of image lines {l;}_; as illustrated
in figure 2 (a). In figure 2 (b), d; is the distance between
the lines I, and I, 1. If we set d; — 0, the collection of the
image lines {l;}}.; forms a rectangular image plane. As-
suming the collection of parallel imaging lines as a single
camera model, such a camera model has the same geomet-
rical property with a normal camera with respect to the y
direction.

Definition 2 A line-motion camera is a collection of rays
which pass through a single line in a space. A line-motion
camera consists of a line-motion camera center which is the
single line and a image plane.

A line-motion camera projects a point X = (X,Y, Z) T
in a space to the point = (x,%) ' on the rectangular im-
age plane according to the equations x = % andy =Y,

where f is the focal length of the line-motion camera.

2.3. Panorama-Camera Model

The rotation of a line camera around the camera axis 7.
yields a collection of image lines {l;}?_; and a collection
of planes {«;}? ; as illustrated in figure 3 (a). The plane
«; includes the image line ; and the line-camera center C'.
In figure 3 (a), w; is the angle between the planes «; and
a;+1. If we set w; — 0 and 1,1 = [y, the collection of
the parallel image lines {l;}?; forms a cylindrical-image
surface. We consider that the collection of these image lines
{l;}7—, and the camera center C construct a camera model.

(@ (b)

Figure 2: The parallel translation of a line camera constructs
a line-motion camera.

Definition 3 A panorama camera is a collection of rays
which pass through a single point in a space. A panorama
camera consists of a panorama-camera center which is the
single point, a cylindrical-image surface and a camera axis
which intersects the panorama-camera center and is paral-
lel to the cylindrical-image surface.

We assume that the panorama-camera center C), =
(0,0,0)7 is located at the origin of the world coordi-
nate system. For the line camera axis r,, we set r, =
k(0,0,1)7 for k € R, that is, the direction of 7, is
the direction of the z axis. A point X = (X,Y,2)7
in a space is projected to the point &, = (zp,Yp,2p) "
on the cylindrical-image surface according to the formu-
lation x,, ﬁX , where f is a focal length of
the panorama camera, as illustrated in figure 3 (b). Here,
we transform the cylindrical-image surface to a rectangu-
lar panoramic image. We set a point on the rectangu-
lar panoramic image is p = (up,v,)’. The points p
and z satisfy the equations u, = fstan™? i’—’; and v, =

tan— ! —2p__
f et

ing from the cylindrical-image to the rectangular image.

where f5 is a scale factor for transform-

(@ (b)

Figure 3: (a) : The rotation of a line camera constructs a
panorama-camera model. We set w; is the angle between
the planes which pass through the camera center C' and the
image lines l; and l; 4, respectively. (b) : A panorama-
camera model.
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3. Hyperbolic-Camera Model

An omni-directional camera is constructed with a pin-hole
camera and a mirror. A hyperbolic camera enables to image
the largest region in such omni-directional cameras [10].
We deal with a hyperbolic camera which practically ob-
serves an omni-directional image. In figure 4, the focal
point of the hyperbolic surface S is F' = (0,0,0) " at the
origin of the world coordinate system. The camera center of
the hyperbolic camera is C = (0,0, —2¢). The hyperbolic-
camera axis 7y, is the line which connects C' and F'. We set

the hyperbolic surface S : i%f — (Z%)Q = —1, where

e=+a?+ b2 Apoint X = (X,Y,Z)" in a space is pro-
jected to the point & = (x,%,z) " on the hyperbolic surface
S according to the formulation, € = A X, where

\— +a?
W XZH+Y2+22FeZ

This relation between X and x is satisfied, if the line,
which connects the focal point F' and the point X, and
the hyperbolic surface S have at least one real common
point. Furthermore, the sign of parameter A\ depends on
the position of the point X [7]. Hereafter, we assume
that the relation of equation (1) is always satisfied. Set-
ting m = (u,v)' to be the point on the image plane T,
the point  on S is projected to the point m on 7 accord-

ing to the equations u = f-—=%—-and v = f # where

z+2e

f is the focal length of the hyperbolic camera. There-

fore, a point X = (X,Y,Z)" in a space is transformed

— 7 a’X and
(a2F2e2)Z+2bey/ X24Y2+122)

ey

to the point m as u =

U= fa?y
T (a2F2e2)Z+2beyV X24Y24Z2)"

Figure 4: A hyperbolic-camera model. A point X in a space
is transformed to the point « on the hyperboloid and x is
transformed to the point m on image plane. The geomet-
rical property of reflected ray constructs the camera model
with a hyperbolic mirror.

4. Camera-Model Transformation

We present the camera-model transformation from a hyper-
bolic camera to a panorama camera. Here, setting C', and F’

to be the panorama-camera center and the the focal point of
the hyperbolic surface S, respectively, we locate C, and F'
at the origin of the world coordinate system. Furthermore,
for the panorama-camera axis r,, and the hyperbolic-camera
axis ry, we set r, = r, = k(0,0, 1)T for k € R, that is,
the directions of 7, and r;, are the direction of the z axis.
For the configuration of the panorama camera and the hy-
perbolic camera which share axes 7, and r}, as illustrated in
figure 5, the points m = (u,v) ", z = (z,y,2) " and x, =
(%, Yp, 2p) are projections of a point X = (X,Y,Z)" in
a space on to the hyperbolic-image plane 7, the the hyper-
bolic surface S and the cylindrical-image surface S, re-
spectively. Here, the points « and m satisfy the equation

;[ m 0
e=x (T ( 5). @

a2

efFby/ u2+v24f2°

hyperbolic-camera image m and the hyperbolic surface S

2 . .
enables us to set ' = ——%——_ The point x is
ef—by/ u?4v2+4f2
transformed to the point x,, according to the equation

_
T Niml
Therefore, equations (2) and (3) derive the relation between
the point x,, and m as

where N = The configuration of the

. A3)

p:fp(f_Qe//\/)< ‘]LQLS/N ) 4)
im| 1

These relations permit us to transform the hyperbolic-image
plane 7 to the cylindrical-image surface S,. This geometri-
cal property leads to the conclusion that a hyperbolic cam-
era and a panorama camera are mathematically equivalent
camera models.

Figure 5: The geometry for the camera transformation from
a hyperbolic camera to a panorama camera.

5. Multiple-View Geometry for
Panorama Cameras

We consider the imaging region observed by the stereo
panorama cameras which are configurated parallel axially,
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single axially and oblique axially. The parallel-axial and
the single-axial stereo cameras image a larger feasible re-
gion than the oblique-axial stereo ones. Here, we deal
with a camera system of four panorama cameras. The four
panorama-camera centers are on the corners of a square ver-
tical to a horizontal plane. Furthermore, all of the cam-
era axes are parallel. Therefore, the panorama-camera cen-
ters are C, = (tz,twtz)—r, Chp = (ta, ty, —t,)", C, =
(—ty,—ty,ts) " and Cyq = (—t,, —t,,—t,) . This con-
figuration is illustrated in figure 6 (a). Since the epipoles
exist on the panorama images and correspond to the cam-
era axes, this camera configuration permits us to eliminate
the rotation between the camera coordinate and the world
coordinate systems.

For a point X, the projections of the point X to cam-
eras C,, Cy, C, and Cy are x, = (cosf,sinf,tana)’,
x, = (cosf,sinf,tanb)’, x. = (cosw,sinw,tanc)’
and xy = (cosw,sinw,tand)’, respectively, on the
cylindrical-image surfaces. These four points are the
corresponding-point quadruplet. The points x,, Ty, @,
and x4 are transformed to p, = (0,a)", p, = (6,0,
p. = (w,c)" andp, = (w,d) ", respectively, on the rectan-
gular panoramic images. The corresponding-point quadru-
plet yields six epipolar planes. Using homogeneous coordi-
nate systems, we represent X as &€ = (X,Y, Z, 1)T. Here,
these six epipolar planes are formulated as M & = 0, where

M = (m17m27m37m47m57m6)T7
sin 6
T —cosf
m, = 0 ’
— sin 0t, + cos 0t
sin w
T — cosw
moy = 0 9
sinwt, — coswt,,
tan csin # — tan a sin w
mT — tan a cosw — tan ccos 6
3 sin(w — 0) ’
—sin(w — 0)t,
tandsinf — tan bsinw
mT — tanbcosw — tandcos 6
4 sin(w — 6) ’
sin(w — 0)t)
tandsinf — tan asinw
mT — | tanacosw —tandcos 0
5 sin(w — 0) ’
0

Figure 6: The configuration of four panorama cameras
whose centers are on the corners of a square vertical to a
horizontal plane. (a) : The six epipolar planes are yielded
by the corresponding-point quadruplet. (b) : The common
points of three planes which are orthogonal are determined
by the configuration of four panorama cameras.

and
tan csin @ — tan bsinw
T tan bcosw — tan ccos 6
mG = .
sin(w — 6)
0

Since these six planes intersect at the point X in a space, the
rank of the matrix M is three. Therefore, the matrix M g,

T
mi1 My MGz Mg m;
0
MR = mji1 Mgy M3 Mja = mlr s
ME1 Me2 ME3 M4 my

is constructed from three row vectors of the matrix M. If and
only if the rank of the matrix My, is three, M  satisfies the
equation M€ = 0. The point X is derived by the equation

X =M 'm, (6)
where
_ mi1 M4z M43 —Mi4
M= mj1 M2 My3 , My = —Mj4

MEp1 Mia M3 —Mipa
)
Equation (6) enable us to reconstruct the point X uniquely
from any three row vectors selected from the matrix M.
However, the elements of the matrix M include the nu-
merical errors in their values in the practical use. We eval-
uate the numerical quantity of the selected row vectors for
the reconstruction using the angles between them. Setting
Jop = mimg and Gog = m/mp for a, 8 = 1,2,3, the
matrices Gr = ((gag)) and G = ((gap)) satisfy the rela-
tions, Gk = MrM}, G = MM'. Setting \; and o; for
i = 1,2, 3, to be the eigenvalues of G i and G, respectively,
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we can quantitatively evaluate the angles between m,, and
mg, and m,, and mg, respectively, from the ratios of the
eigenvalues. The ratios \;/\; and 0;/0; determine the ap-
proximate dimensions of the volume spanned by the eigen-
vectors as follows:

1. If the eigenvalues satisfy

A1 > >\2 :)\37 o1 > 09 ~ 03, (8)

the dimension of the volume spanned by the eigenvec-
tors is approximately one. Therefore, the three row
vectors of the matrices M g and M are distributed on
a line.

2. If the eigenvalues satisfy

A>3, 01 09 > 03, 9

the dimensions of the volume spanned by the eigen-
vectors are approximately two. Therefore, the three
row vectors of the matrices M i and M are distributed
on a plane.

3. If the eigenvalues satisfy

)\1’:>\2’:>\3, 01 >~ 09 X 03, (10)

the dimensions of the volume spanned by the eigen-
vectors are approximately three. Therefore, the three
row vectors of the matrices M i and M are distributed
in a space.

The point X is derived by the equation (6) as a numerically
stable solution if the eigenvalues \; and o; satisfy the equa-
tions (10). Specifically, the conditions

A =X = A3, 01 =09 =03, (11)

indicate that the three row vectors are mutually orthogo-
nal. These mathematical properties lead to the conclusion
that we can select three orthogonal planes from six epipolar
planes for the reconstruction of the point X. The configu-
ration of four panorama cameras determines the point as the
common points of three planes which are orthogonal. The
collections of the points are expressed as follows:

1. IfOél J_Ozg Lﬂl

XP4+Y? =824t Z=t.. (12)
2. IfOél 1 (6] 1 52
XP+Y? =t +1t), Z=-—t.. (13)

3. Ifon LBy L B
(X —t.)2+ (Y —t,)*+ 22 =12, (14)
4. Iy L By L B
(X +t)2+ (Y +1,)2 4+ 22 =12 (15

() (b) (©

Figure 7: The approximate dimensions of the eigenvectors
are determined by the ratios \;/\; and o;/0;. For egs. (8),
(9) and (10), the three row vectors of the matrices M p and
M are distributed on a line (a), on a plane (b) and in a space
(c), respectively.

(@ (b)

Figure 8: The configuration of four panorama cameras
whose centers are on the corners of a horizontal square. (a)
: The six epipolar planes are yielded by the corresponding-
point quadruplet. (b) : The common points of three planes
which are orthogonal are determined by the configuration
of four panorama cameras.

Equations (12) and (13) geometrically define the circles on
a plane in a space. Equations (14) and (15) geometrically
define the spheres in a space. Figure 6 (b) shows the two
circles and the two spheres defined by equations (12), (13),
(14) and (15).

Next, we consider a camera system whose camera cen-
ters are configurated on the corners of a horizontal square,
and assuming that all of the camera axes are parallel.
Here, four panorama-camera centers are C, = (t;,t,,0) 7,
Cy = (—tyty,0)7, Co = (—tz,—1,,0)" and Cy =
(ty, —ty,0)T. This configuration is illustrated in figure 8
(a). The corresponding-point quadruplet for a point in a
space yields six epipolar planes. The three planes selected
from the four epipolar planes intersect orthogonally on a
common point. The collections of the common points of
three planes which are orthogonal are expressed as follows:

1. IfOél 1 Qo J_ﬁl

X2+ 722 =1, Y =t, (16)
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2. IfOél J_QQ LﬁQ

Y24 ZP=t), X =—t,. (17)
3.1y LB LB

X2+ 7=t Y =—t, (18)
4. I oy L By L By

VP4 ZP =12, X =t,. (19)

Equations (16), (17), (18) and (19) geometrically define the
circles on a plane in a space. Figure 8 (b) shows the circles
defined by these equations.

For the configurations of cameras in figure 6 (a) and fig-
ure 8 (a), the four panorama-camera centers are located on
a vertical plane and a horizontal plane, respectively, in a
space. If a point in a space are on this plane, all elements
of a corresponding-point quadruplet for the point are mutu-
ally coplanar on this plane. The six epipolar planes yielded
by a corresponding-point quadruplet for the point coincide
to a plane. Therefore, the point on this plane is not possi-
ble to reconstruct from the geometrical constraint of the six
epipolar planes.

Finally, we propose a camera system with eight
panorama cameras combinating the two configurations of
four panorama cameras shown in figure 6 (a) and figure
8 (a). Therefore, the eight panorama-camera centers are
on the corners of a parallel pipe. This configuration is il-
lustrated in figure 9. For this eight panorama-camera sys-
tem, the corresponding-point octuplet for a point in a space
yields 28 epipolar planes. Same as the four panorama-
camera system, this eight panorama-camera system enables
us to select three orthogonal planes, which orthogonally in-
tersect on a common point, from the 28 epipolar planes. The
collections of common points of three epipolar planes yield
the 16 circles and the 8 spheres as illustrated in figure 10.
Since cameras of this system are configurated in a space,
this camera system can yield more combinations of orthog-
onal planes than the four camera system dose. Therefore,
the points which are the common points of these orthogonal
planes distribute in wider areas in a space. Furthermore, be-
cause of the combination of the two planar configurations,
the configuration in a space of eight cameras has no critical
point which are not reconstructed. This geometrical prop-
erty leads to the conclusion that our eight panorama-camera
system provides a larger feasible region for the reconstruc-
tion of objects than four-camera system on a plane.

6. Summary and Conclusions

In this paper, we formulated quadrilinear forms for the mul-
tiple images observed by panorama and omni-directional
cameras. We observed that multiple-focal-tensorial expres-
sion is a natural mathematical tool for the analysis of multi-
ple panorama-camera system.

(a) (d) (c)

Figure 10: The gray circles in figures are the spheres. The
dashed lines in these figures are the circles on a plane in a
space. These spheres and circles are yielded by the collec-
tions of common points of three orthogonal planes selected
from 28 epipolar planes.
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