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Abstract

We formulate multiple-view geometry for omni-directional
and panorama-camera systems. The mathematical formu-
lations enable us to derive the geometrical and algebraic
constraints for multiple panorama-camera configurations.
The constraints permit us to reconstruct three-dimensional
objects for a large feasible region.

1. Introduction

In this paper, we analyze the geometrical configurations of
omni-directional camera systems fulfilling the conditions
for the multiple-view geometry to reduce the number of
constraints for the multiple camera systems. This is the
first step to establish the multiple-view geometry for omni-
directional camera systems as an extension from multiple-
view geometry for pin-hole camera systems to multiple-
view geometry for omni-directional camera systems.

Multiple-view geometry for pin-hole cameras studied in
the computer vision community. The well-known alge-
braic constraints for the multiple-view geometry were in-
troduced, such as epipolar constraints equivalently bilinear
form [1], [2] for stereo views, the trifocal tensor [2], [3] for
three views, the quadrifocal tensor [4], [5] for four views
and the factorization method [6] for multiple views. On
the other hand, T. Svoboda, T. Pajdla and V. Hlavac in-
troduced the geometrical constraint for stereo systems of
omni-directional cameras [7]. Furthermore, T. Sogo, H.
Ishiguro and M. M. Trivedi introduced the multiple omni-
directional camera systems for localization and tracking [8].
They analyzed the combinatorial property of point corre-
spondences for the multiple omni-directional camera sys-
tems and they solved the point correspondences problem
for real-time human tracking which is a NP-hard problem
using their N-ocular stereo camera system. However, three
or more view geometrical constraints are not clearly repre-
sented for the omni-directional cameras. Our aim in this
study is to derive the geometrical and algebraic constraints
for multiple omni-directional cameras.

Recently, T. Sugimura and J. Sato proved [9] that the

number of algebraic constraints in the trifocal tensor is re-
duced if cameras mutually image their epipoles. This ge-
ometrical condition restricts the geometrical configuration
of pin-hole cameras, because multiple pin-hole camera sys-
tems can not always observe the epipoles of their cam-
eras. Here, we assume omni-directional cameras are lo-
cated parallel on the same plane. These omni-directional
camera systems satisfy the geometrical condition that they
always observe the epipoles of their cameras, because the
omni-directional camera always images the other cameras.
Therefore, Sato’s condition could be achieved with multiple
omni-directional camera systems.

In this study, we first define the panorama-camera model
using the geometrical concept of line camera. Next,
we show the mathematical equivalence of the panorama-
camera model and the hyperbolic-camera model. Finally,
we formulate multiple-view geometry for panorama-camera
systems and derive the geometrical and algebraic con-
straints for multiple panorama-camera configurations.

2. Panoramic Image

A sequence of pin-hole camera images enables us to syn-
thesize a wide view image comparing to the image observed
by a camera. The synthesized image from a sequence of im-
ages is generally called a panoramic image. Since a point
and a line are fundamental elements for imaging, many
camera models could be geometrically constructed from the
two essential elements for imaging. Therefore, we formu-
late a camera model with lines and points for our applica-
tions.

2.1. Line-Camera Model

Definition 1 A line camera is a collection of rays which
pass through a single point on a plane in a space. A line-
camera model consists of a line-camera center which is the
single point, an image line and a camera axis which inter-
sects the line-camera center and is parallel to the image
line.
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We assume that the line-camera center C = (0, 0, 0)�

is located at the origin of the world coordinate system. For
the line camera axis rc, we set rc = k(0, 0, 1)� for k ∈
R, that is, the direction of rc is the direction of the z axis.
For the image line l of the line camera on the x-z plane
(y = 0), a point X = (X, 0, Z)� in a space is projected to
the point x = (x, 0)� on the image line l according to the
formulation x = f X

Z , where f is the focal length of the line
camera.

Figure 1: A line-camera model.

2.2. Line-Motion Camera Model
The motion of a line camera along the direction of the y
axis yields a collection of image lines {lt}n

t=1 as illustrated
in figure 2 (a). In figure 2 (b), dt is the distance between
the lines lt and lt+1. If we set dt → 0, the collection of the
image lines {lt}n

t=1 forms a rectangular image plane. As-
suming the collection of parallel imaging lines as a single
camera model, such a camera model has the same geomet-
rical property with a normal camera with respect to the y
direction.

Definition 2 A line-motion camera is a collection of rays
which pass through a single line in a space. A line-motion
camera consists of a line-motion camera center which is the
single line and a image plane.

A line-motion camera projects a point X = (X,Y, Z)�

in a space to the point x = (x, y)� on the rectangular im-
age plane according to the equations x = f X

Z and y = Y ,
where f is the focal length of the line-motion camera.

2.3. Panorama-Camera Model
The rotation of a line camera around the camera axis rc

yields a collection of image lines {li}n
i=1 and a collection

of planes {αi}n
i=1 as illustrated in figure 3 (a). The plane

αi includes the image line li and the line-camera center C.
In figure 3 (a), ωi is the angle between the planes αi and
αi+1. If we set ωi → 0 and ln+1 = l1, the collection of
the parallel image lines {li}n

i=1 forms a cylindrical-image
surface. We consider that the collection of these image lines
{li}n

i=1 and the camera center C construct a camera model.

(a) (b)

Figure 2: The parallel translation of a line camera constructs
a line-motion camera.

Definition 3 A panorama camera is a collection of rays
which pass through a single point in a space. A panorama
camera consists of a panorama-camera center which is the
single point, a cylindrical-image surface and a camera axis
which intersects the panorama-camera center and is paral-
lel to the cylindrical-image surface.

We assume that the panorama-camera center Cp =
(0, 0, 0)� is located at the origin of the world coordi-
nate system. For the line camera axis rp, we set rp =
k(0, 0, 1)� for k ∈ R, that is, the direction of rp is
the direction of the z axis. A point X = (X, Y, Z)�

in a space is projected to the point xp = (xp, yp, zp)�

on the cylindrical-image surface according to the formu-
lation xp = f√

X2+Y 2 X, where f is a focal length of
the panorama camera, as illustrated in figure 3 (b). Here,
we transform the cylindrical-image surface to a rectangu-
lar panoramic image. We set a point on the rectangu-
lar panoramic image is p = (up, vp)�. The points p
and x satisfy the equations up = fs tan−1 yp

xp
and vp =

fs tan−1 zp√
x2

p+y2
p

, where fs is a scale factor for transform-

ing from the cylindrical-image to the rectangular image.

(a) (b)

Figure 3: (a) : The rotation of a line camera constructs a
panorama-camera model. We set ωi is the angle between
the planes which pass through the camera center C and the
image lines li and li+1, respectively. (b) : A panorama-
camera model.
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3. Hyperbolic-Camera Model
An omni-directional camera is constructed with a pin-hole
camera and a mirror. A hyperbolic camera enables to image
the largest region in such omni-directional cameras [10].
We deal with a hyperbolic camera which practically ob-
serves an omni-directional image. In figure 4, the focal
point of the hyperbolic surface S is F = (0, 0, 0)� at the
origin of the world coordinate system. The camera center of
the hyperbolic camera is C = (0, 0,−2e). The hyperbolic-
camera axis rh is the line which connects C and F . We set
the hyperbolic surface S : x2+y2

a2 − (z+e)2

b2 = −1, where
e =

√
a2 + b2. A point X = (X, Y, Z)� in a space is pro-

jected to the point x = (x, y, z)� on the hyperbolic surface
S according to the formulation, x = λX, where

λ =
±a2

b
√

X2 + Y 2 + Z2 ∓ eZ
. (1)

This relation between X and x is satisfied, if the line,
which connects the focal point F and the point X , and
the hyperbolic surface S have at least one real common
point. Furthermore, the sign of parameter λ depends on
the position of the point X [7]. Hereafter, we assume
that the relation of equation (1) is always satisfied. Set-
ting m = (u, v)� to be the point on the image plane π,
the point x on S is projected to the point m on π accord-
ing to the equations u = f x

z+2e and v = f y
z+2e , where

f is the focal length of the hyperbolic camera. There-
fore, a point X = (X, Y, Z)� in a space is transformed

to the point m as u = fa2X

(a2∓2e2)Z±2be
√

X2+Y 2+Z2)
and

v = fa2Y

(a2∓2e2)Z±2be
√

X2+Y 2+Z2)
.

Figure 4: A hyperbolic-camera model. A point X in a space
is transformed to the point x on the hyperboloid and x is
transformed to the point m on image plane. The geomet-
rical property of reflected ray constructs the camera model
with a hyperbolic mirror.

4. Camera-Model Transformation
We present the camera-model transformation from a hyper-
bolic camera to a panorama camera. Here, setting Cp and F

to be the panorama-camera center and the the focal point of
the hyperbolic surface S, respectively, we locate Cp and F
at the origin of the world coordinate system. Furthermore,
for the panorama-camera axis rp and the hyperbolic-camera
axis rh, we set rp = rh = k(0, 0, 1)� for k ∈ R, that is,
the directions of rp and rh are the direction of the z axis.
For the configuration of the panorama camera and the hy-
perbolic camera which share axes rp and rh as illustrated in
figure 5, the points m = (u, v)�, x = (x, y, z)� and xp =
(xp, yp, zp) are projections of a point X = (X,Y, Z)� in
a space on to the hyperbolic-image plane π, the the hyper-
bolic surface S and the cylindrical-image surface Sp, re-
spectively. Here, the points x and m satisfy the equation

x = λ′
(

m
f

)
+

(
0

−2e

)
, (2)

where λ′ = a2

ef∓b
√

u2+v2+f2
. The configuration of the

hyperbolic-camera image π and the hyperbolic surface S

enables us to set λ′ = a2

ef−b
√

u2+v2+f2
. The point x is

transformed to the point xp according to the equation

xp =
fp

λ′|m|x. (3)

Therefore, equations (2) and (3) derive the relation between
the point xp and m as

xp =
fp(f − 2e/λ′)

|m|
( m

f−2e/λ′

1

)
. (4)

These relations permit us to transform the hyperbolic-image
plane π to the cylindrical-image surface Sp. This geometri-
cal property leads to the conclusion that a hyperbolic cam-
era and a panorama camera are mathematically equivalent
camera models.

Figure 5: The geometry for the camera transformation from
a hyperbolic camera to a panorama camera.

5. Multiple-View Geometry for
Panorama Cameras

We consider the imaging region observed by the stereo
panorama cameras which are configurated parallel axially,
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single axially and oblique axially. The parallel-axial and
the single-axial stereo cameras image a larger feasible re-
gion than the oblique-axial stereo ones. Here, we deal
with a camera system of four panorama cameras. The four
panorama-camera centers are on the corners of a square ver-
tical to a horizontal plane. Furthermore, all of the cam-
era axes are parallel. Therefore, the panorama-camera cen-
ters are Ca = (tx, ty, tz)�, Cb = (tx, ty,−tz)�, Cc =
(−tx,−ty, tz)� and Cd = (−tx,−ty,−tz)�. This con-
figuration is illustrated in figure 6 (a). Since the epipoles
exist on the panorama images and correspond to the cam-
era axes, this camera configuration permits us to eliminate
the rotation between the camera coordinate and the world
coordinate systems.

For a point X , the projections of the point X to cam-
eras Ca, Cb, Cc and Cd are xa = (cos θ, sin θ, tan a)�,
xb = (cos θ, sin θ, tan b)�, xc = (cos ω, sin ω, tan c)�

and xd = (cos ω, sin ω, tan d)�, respectively, on the
cylindrical-image surfaces. These four points are the
corresponding-point quadruplet. The points xa, xb, xc

and xd are transformed to pa = (θ, a)�, pb = (θ, b)�,
pc = (ω, c)� and pd = (ω, d)�, respectively, on the rectan-
gular panoramic images. The corresponding-point quadru-
plet yields six epipolar planes. Using homogeneous coordi-
nate systems, we represent X as ξ = (X, Y, Z, 1)�. Here,
these six epipolar planes are formulated as Mξ = 0, where
M = (m1, m2,m3, m4, m5, m6)�,

m�
1 =




sin θ
− cos θ

0
− sin θtx + cos θty


 ,

m�
2 =




sin ω
− cos ω

0
sin ωtx − cos ωty


 ,

m�
3 =




tan c sin θ − tan a sin ω
tan a cos ω − tan c cos θ

sin(ω − θ)
− sin(ω − θ)tz


 ,

m�
4 =




tan d sin θ − tan b sinω
tan b cos ω − tan d cos θ

sin(ω − θ)
sin(ω − θ)tz)


 ,

m�
5 =




tan d sin θ − tan a sin ω
tan a cos ω − tan d cos θ

sin(ω − θ)
0


 ,

(a) (b)

Figure 6: The configuration of four panorama cameras
whose centers are on the corners of a square vertical to a
horizontal plane. (a) : The six epipolar planes are yielded
by the corresponding-point quadruplet. (b) : The common
points of three planes which are orthogonal are determined
by the configuration of four panorama cameras.

and

m�
6 =




tan c sin θ − tan b sin ω
tan b cos ω − tan c cos θ

sin(ω − θ)
0


 .

Since these six planes intersect at the point X in a space, the
rank of the matrix M is three. Therefore, the matrix MR,

MR =


 mi1 mi2 mi3 mi4

mj1 mj2 mj3 mj4

mk1 mk2 mk3 mk4


 =


 m�

i

m�
j

m�
k


 ,

(5)
is constructed from three row vectors of the matrix M. If and
only if the rank of the matrix MR is three, MR satisfies the
equation MRξ = 0. The point X is derived by the equation

X = M̄−1m4 (6)

where

M̄ =


 mi1 mi2 mi3

mj1 mj2 mj3

mk1 mk2 mk3


 , m̄4 =


 −mi4

−mj4

−mk4


 .

(7)
Equation (6) enable us to reconstruct the point X uniquely
from any three row vectors selected from the matrix M.

However, the elements of the matrix M include the nu-
merical errors in their values in the practical use. We eval-
uate the numerical quantity of the selected row vectors for
the reconstruction using the angles between them. Setting
gαβ = m�

α mβ and ḡαβ = m̄�
α m̄β for α, β = 1, 2, 3, the

matrices GR = ((gαβ)) and Ḡ = ((ḡαβ)) satisfy the rela-
tions, GR = MRM�

R, Ḡ = M̄M̄�. Setting λi and σi for
i = 1, 2, 3, to be the eigenvalues of GR and Ḡ, respectively,
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we can quantitatively evaluate the angles between mα and
mβ , and m̄α and m̄β , respectively, from the ratios of the
eigenvalues. The ratios λi/λj and σi/σj determine the ap-
proximate dimensions of the volume spanned by the eigen-
vectors as follows:

1. If the eigenvalues satisfy

λ1 � λ2 � λ3, σ1 � σ2 � σ3, (8)

the dimension of the volume spanned by the eigenvec-
tors is approximately one. Therefore, the three row
vectors of the matrices MR and M̄ are distributed on
a line.

2. If the eigenvalues satisfy

λ1 � λ2 � λ3, σ1 � σ2 � σ3, (9)

the dimensions of the volume spanned by the eigen-
vectors are approximately two. Therefore, the three
row vectors of the matrices MR and M̄ are distributed
on a plane.

3. If the eigenvalues satisfy

λ1 � λ2 � λ3, σ1 � σ2 � σ3, (10)

the dimensions of the volume spanned by the eigen-
vectors are approximately three. Therefore, the three
row vectors of the matrices MR and M̄ are distributed
in a space.

The point X is derived by the equation (6) as a numerically
stable solution if the eigenvalues λi and σi satisfy the equa-
tions (10). Specifically, the conditions

λ1 = λ2 = λ3, σ1 = σ2 = σ3, (11)

indicate that the three row vectors are mutually orthogo-
nal. These mathematical properties lead to the conclusion
that we can select three orthogonal planes from six epipolar
planes for the reconstruction of the point X . The configu-
ration of four panorama cameras determines the point as the
common points of three planes which are orthogonal. The
collections of the points are expressed as follows:

1. If α1 ⊥ α2 ⊥ β1

X2 + Y 2 = t2x + t2y, Z = tz. (12)

2. If α1 ⊥ α2 ⊥ β2

X2 + Y 2 = t2x + t2y, Z = −tz. (13)

3. If α1 ⊥ β1 ⊥ β2

(X − tx)2 + (Y − ty)2 + Z2 = t2z. (14)

4. If α2 ⊥ β1 ⊥ β2

(X + tx)2 + (Y + ty)2 + Z2 = t2z. (15)

(a) (b) (c)

Figure 7: The approximate dimensions of the eigenvectors
are determined by the ratios λi/λj and σi/σj . For eqs. (8),
(9) and (10), the three row vectors of the matrices MR and
M̄ are distributed on a line (a), on a plane (b) and in a space
(c), respectively.

(a) (b)

Figure 8: The configuration of four panorama cameras
whose centers are on the corners of a horizontal square. (a)
: The six epipolar planes are yielded by the corresponding-
point quadruplet. (b) : The common points of three planes
which are orthogonal are determined by the configuration
of four panorama cameras.

Equations (12) and (13) geometrically define the circles on
a plane in a space. Equations (14) and (15) geometrically
define the spheres in a space. Figure 6 (b) shows the two
circles and the two spheres defined by equations (12), (13),
(14) and (15).

Next, we consider a camera system whose camera cen-
ters are configurated on the corners of a horizontal square,
and assuming that all of the camera axes are parallel.
Here, four panorama-camera centers are Ca = (tx, ty, 0)�,
Cb = (−tx, ty, 0)�, Cc = (−tx,−ty, 0)� and Cd =
(tx,−ty, 0)�. This configuration is illustrated in figure 8
(a). The corresponding-point quadruplet for a point in a
space yields six epipolar planes. The three planes selected
from the four epipolar planes intersect orthogonally on a
common point. The collections of the common points of
three planes which are orthogonal are expressed as follows:

1. If α1 ⊥ α2 ⊥ β1

X2 + Z2 = t2x, Y = ty. (16)
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2. If α1 ⊥ α2 ⊥ β2

Y 2 + Z2 = t2y, X = −tx. (17)

3. If α1 ⊥ β1 ⊥ β2

X2 + Z2 = t2x, Y = −ty. (18)

4. If α2 ⊥ β1 ⊥ β2

Y 2 + Z2 = t2y, X = tx. (19)

Equations (16), (17), (18) and (19) geometrically define the
circles on a plane in a space. Figure 8 (b) shows the circles
defined by these equations.

For the configurations of cameras in figure 6 (a) and fig-
ure 8 (a), the four panorama-camera centers are located on
a vertical plane and a horizontal plane, respectively, in a
space. If a point in a space are on this plane, all elements
of a corresponding-point quadruplet for the point are mutu-
ally coplanar on this plane. The six epipolar planes yielded
by a corresponding-point quadruplet for the point coincide
to a plane. Therefore, the point on this plane is not possi-
ble to reconstruct from the geometrical constraint of the six
epipolar planes.

Finally, we propose a camera system with eight
panorama cameras combinating the two configurations of
four panorama cameras shown in figure 6 (a) and figure
8 (a). Therefore, the eight panorama-camera centers are
on the corners of a parallel pipe. This configuration is il-
lustrated in figure 9. For this eight panorama-camera sys-
tem, the corresponding-point octuplet for a point in a space
yields 28 epipolar planes. Same as the four panorama-
camera system, this eight panorama-camera system enables
us to select three orthogonal planes, which orthogonally in-
tersect on a common point, from the 28 epipolar planes. The
collections of common points of three epipolar planes yield
the 16 circles and the 8 spheres as illustrated in figure 10.
Since cameras of this system are configurated in a space,
this camera system can yield more combinations of orthog-
onal planes than the four camera system dose. Therefore,
the points which are the common points of these orthogonal
planes distribute in wider areas in a space. Furthermore, be-
cause of the combination of the two planar configurations,
the configuration in a space of eight cameras has no critical
point which are not reconstructed. This geometrical prop-
erty leads to the conclusion that our eight panorama-camera
system provides a larger feasible region for the reconstruc-
tion of objects than four-camera system on a plane.

6. Summary and Conclusions
In this paper, we formulated quadrilinear forms for the mul-
tiple images observed by panorama and omni-directional
cameras. We observed that multiple-focal-tensorial expres-
sion is a natural mathematical tool for the analysis of multi-
ple panorama-camera system.

Figure 9: The configuration for eight panorama cameras.

(a) (b) (c)

Figure 10: The gray circles in figures are the spheres. The
dashed lines in these figures are the circles on a plane in a
space. These spheres and circles are yielded by the collec-
tions of common points of three orthogonal planes selected
from 28 epipolar planes.
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