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Abstract. We propose a method for tracking human heads, where in-
teraction between hypotheses plays a key role. We model appearances of
the human head and generate hypotheses for a human head in the im-
age in the model space. We then propagate and reform hypotheses over
time in turn to realize tracking human heads. During tracking, we bring
about interaction between hypotheses to eliminate the hypotheses de-
noting false positives and, at the same time, to maintain the hypotheses
denoting human heads.

1 Introduction

The ability to detect and track moving people is one of the most important
problems in vision. This is because visual interpretation of people and their
movements is an important issue in many applications such as visual surveillance
and monitoring [2–4, 9].

Condensation [5, 7] was proposed for realizing robust tracking of multi-objects
and its effectiveness has been reported [6, 8, 11]. Condensation is the scheme that
incorporates stochastic dynamics into the probabilistic framework. In condensa-
tion, the density of interpretation samples is normalized to be the probability
density. Normalizing the density indicates that interpretation samples in the
image are relatively evaluated under the same measure. For the same object,
evaluating its interpretation samples under the same measure is effective. For
different objects, however, the evaluating measure should be changed depending
on the object. This is because the relative evaluation between different objects
does not make sense. (If one correct hypothesis with a very high score exists,
other correct hypotheses are suppressed. This is irrelevant to them because their
correctness should be independent.)

In multi-object tracking, the system does not know the number of objects
in the image, and in many cases, the number of objects in the image changes
during tracking. The system thus has to identify the correspondence between
objects and hypotheses. Once the correspondence is identified, the probabilis-
tic framework such as condensation will work effectively. Without identifying
the correspondence, however, we cannot employ the probabilistic framework. To
build up a robust and flexible system that is capable of tracking multiple objects
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Fig. 1. An object in an image and its hypothesis as the certainty distribution in P .

even though some of them disappear, new objects come into the image and occlu-
sions occur during tracking, required is a method in which the system maintains
simultaneous alternative hypotheses of objects and, at the same time, identifies
the correspondence between the hypotheses and the objects in the image.

This paper proposes a method for tracking human heads by a monocular cam-
era in which the system maintains simultaneous hypotheses for human heads and
establishes the correspondence between the hypotheses and the human heads.
To establish such correspondence, we bring about interaction between hypothe-
ses by effectively utilizing both spatial continuity in the image and temporal
continuity during tracking.

2 Hypotheses and their representation

2.1 Certainty

The appearance of the human head can be modeled by an ellipse and it has
five parameters. Namely, setting the five parameters corresponds to a possible
appearance of the human head in the image. Such parameters construct a space,
called a parameter space, whose dimension is the number of parameters required
for the modeling. We denote the parameter space by P .

A human-head appearance in the image corresponds to a point in P . Unless
we perfectly and accurately detect a human-head appearance in the image, we
have ambiguity in identifying the point in P that corresponds to the appear-
ance. We thus represent this ambiguity (more exactly, unambiguity) in terms of
certainty, where certainty is defined as follows: (i) the domain is P and the range
is [0, 1], (ii) the ambiguity in denoting a human-head appearance is expressed
as the value, and (iii) when a point corresponds to a human-head appearance
precisely, its value is 1 while it is 0 when a point corresponds a false positive.

Furthermore, to enhance the robustness in the expression of a hypothesis
in P , we introduce a distribution, called a certainty distribution, over P . That
is, for a detected possible human-head appearance (which may include false
positives), we generate a hypothesis in the parameter space, where the hypothesis
is represented as its certainty distribution (see Fig. 1).

2.2 Certainty-evaluation of an appearance model

For a point in P , we evaluate its corresponding appearance by different features
i (i = 1, 2, . . . , F ) in the image. They may be color, intensity or gradient infor-
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Fig. 2. Propagation of the certainty distribution representing a hypothesis.

mation, for example. The evaluation result by feature i is then transformed to
certainty. We thus obtain certainty of the point of interest in P . This evaluation
process by feature i is called certainty-evaluation i. That is, certainty-evaluation
i can be expressed by f i(p) = ψi(ei(p)), where p is a point in P , ei is the eval-
uation by feature i, and ψi is a function that transforms the evaluation result
to certainty. Hence, the evaluation of p by all the features is expressed as an
integration of f i’s: f(p) := κ

⊗F
i=1 f i(p), where

⊗
implies the integration of

f i’s and κ is the normalization factor so that the range of f becomes [0, 1].
⊗

may be the summation or the multiplication, depending on employed features,
in the simplest case.

The transformation function ψi can be determined with the help of the ideal
value of certainty that is obtained by detecting by hand an appearance of a
human head.

2.3 Tracking with certainty distributions

Tracking is conducted in the similar way as condensation. Namely, for a human
head, the system generates hypotheses and represents them in P as certainty
distributions and then propagates them over time to predict the hypotheses
for the next image. The system reforms the hypotheses through sampling from
the newly captured image. The reformed hypotheses are also used for the next
propagation. Tracking is realized by the cycle of propagation and reformation
of hypotheses. The cycle of propagating and reforming a hypothesis is iterated
over time for all hypotheses.

1. Hypothesis generation
To avoid the computational cost for the first detection, we employ the back-
ground subtraction. We can, thus, identify the regions within the image that
may include objects. Based on the difference of intensities between the in-
put image and the background image, we sample a pixel to obtain position
information of an object. This information gives us constraints on P . We ran-
domly sample a point p in P that satisfies the constraints, and then evaluate
p to obtain f(p). When f(p) is greater than a threshold given in advance, we
regard p as a hypothesis and represent it as its certainty distribution using
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Fig. 3. Relationship between certainty distributions in parameter space and objects in
the image.

f(p). We iterate this sampling to generate hypotheses of objects. We remark
that different hypotheses may be generated for one object appearance and
that a hypothesis does not necessarily denote an object in the image due to
false positives.

2. Hypothesis propagation
For a hypothesis of an object, its certainty distribution is not static over
time. In accordance with the object movement, it dynamically changes. We
incorporate the object movement into the propagation of a certainty dis-
tribution. Namely, we propagate the certainty distribution for the current
image to obtain the certainty distribution for a new image. The propagation
over time is conducted by the parameters representing the certainty distri-
bution. For example, they are the peak, the variance and the scale of the
distribution as shown in (Fig. 2).

3. Hypothesis reforming
A propagated hypothesis does not reflect the information within a newly
captured image. To accurately reflect the information within the new image,
the propagated hypothesis has to be reformed through feedback from the new
image. The propagated hypothesis allows us to know certainty for each point
in P . We therefore sample points based on this certainty to have a sample
set for the hypothesis. Then, in the new image we evaluate the sample points
to reform the hypothesis.

3 Interaction between hypotheses

3.1 Hypotheses and their denoting objects

When tracking human heads, the number of people in the image is unknown.
Moreover, the number may change over time. Namely, some objects may dis-
appear from the image and some may newly come into the image. To robustly
track human heads under these conditions, we have to identify the relationship
between hypotheses and their corresponding human heads in the image (Fig. 3).
We also have to identify false positives.

For the discussion below, we classify the hypotheses maintained over time
into three types. We remark that the system itself has not identified the type to
which a hypothesis belongs.
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Type A: the hypotheses denoting a human head (human head A).
Type Ā: the hypotheses denoting other human heads.
Type F: the hypotheses denoting false positives.

3.2 Identifying false positives through cumulation of certainty

To identify hypotheses denoting false positives, we use temporal continuity of
certainty during tracking.

For a hypothesis h at time tk, we compute the maximum value of its certainty
γh

tk
. If the hypothesis h denotes a human head, namely, h does not belong to type

F, cumulation of γh
tk

over tk increases at a high speed and it does not become
saturated as far as the human head exists in the image1. If h is a false positive,
on the other hand, cumulation of γh

tk
slowly increases and can be saturated.

We set a threshold γ̃ that expresses the likeness of a human head, and cu-
mulate over time the difference of γh

tk
from γ̃. If the cumulation of the difference

over a fixed amount of time is not greater than another threshold Γ̃ for the
cumulation, we then regard the hypothesis as a false positive and throw it away.

3.3 Identifying objects through interaction between hypotheses

When the projections of two hypotheses not in type F onto the image become
sufficiently close to each other, two cases can occur in the image depending on
their denoting human heads: one is the case where the human heads are the
same, and the other is the case where they are different. In the former case, the
two hypotheses should be merged since we now know that the two hypotheses
are for the same human head. In the latter case, on the other hand, two different
human heads have become sufficiently close to each other in the image. This
implies that one human head is going to occlude the other. Hence, both the two
hypotheses should survive. To properly deal with these situations, the system
brings about interaction between hypotheses close to each other where spatial
continuity in the image plays an important role.

We incorporate fringe information of a hypothesis to measure interaction
between two hypotheses. Here, fringe information of a hypothesis implies fea-
tures, called fringe features, obtained nearby the appearance in the image that
corresponds to the peak of the certainty distribution expressing the hypothesis.
Fringe features can be detected, for example, from the neck line, the shoulder
line and even from the body.

We introduce a measure for the degree of interaction between two hypotheses
based on their fringe features. For a fringe feature, we frame-wisely compute the
distance between the fringe features of the hypotheses. A small distance of a
fringe feature supports the sameness of two human heads and, therefore, the
two hypotheses should be merged. A large distance, on the other hand, supports
1 In the case where a human head disappears from the image, it is expected that

cumulation of γh
tk

starts being saturated synchronized with time when the human
head disappears. h then becomes a false positive.
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Table 1. The desired results after the interaction between two hypotheses h and h′.

type of h A A A F

type of h′ Ā A F F

surviving type A and Ā A A F

sign of w + (large) − ± (small) −

the difference between the two human heads and, thus, both the two hypotheses
should survive. The distance itself can be regarded as the degree of interaction
for the frame of interest. A weighted average of the degrees of interaction over
the frames captured so far, gives us the degree of interaction measured by the
fringe feature. We thereby integrate the degree of interaction measured by each
fringe feature to obtain the degree of interaction between the two hypotheses at
that time.

To realize the above measure, we define w such that w is negative if two
hypotheses should be merged, and w is positive if both should survive. When w
is equal to zero, two hypotheses do not interact. Table 1 enumerates all the cases
where two hypotheses interact with each other (± implies that w can be either
positive or negative depending on a hypothesis in type F.)

The cumulative certainty of a hypothesis h is evaluated by cumulating over
time, certainty of h itself and the degree of interaction from other hypotheses
that interact with h. A hypothesis with a positive w contributes to increase
cumulative certainty of h, and a hypothesis with a negative w contributes to
decrease cumulative certainty of h. A hypothesis that makes w zero, contributes
nothing to cumulative certainty of h (no interaction occurs).

This mechanism of interaction between hypotheses leads to merging and
surviving of hypotheses that we expect. The system eventually identifies the
one-to-one correspondence between hypotheses and human heads.

4 Experiments

We employed three features [1, 10] to evaluate the human-head model, i.e., the
ellipse: (i) the intersecting ratio between the chromaticity-based color histogram
inside the ellipse and that of the human head, (ii) the normalized mean of the ver-
tical components of the gradient magnitude around the perimeter of the ellipse,
(iii) the average of intensity difference inside the ellipse from the background.

We brought about interaction between hypotheses when the foots of their
certainty distributions intersected, and used two fringe features: the velocity in
the image of the ellipse center and the histogram of gradient magnitude inside
the rectangle constructed below the ellipse. Here, gradients were computed along
the vertical direction in the image.

We generated the following situation. At first, one person A comes in the
image (#34) and after passing by the front of the camera, A disappears (#59).
Next, another person B comes in (#97) and stops with captured around in the
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#097 #098 #110 #134 #135 #139

#140 #141 #142 #145 #146 #183

#187 #199 #224 #237 #242 #250

Fig. 4. Images (with frame numbers) in the outdoor and detected human heads.

center of image (#110). Another person C then comes in (#134) and passes by
behind B (#140) and then disappears (#146). Next, a fourth person D comes
in (#183) and becomes very close to B but does not pass by (#224). After B
and D part from each other (#243), they disappear one after another (#251 and
#257). (Here, the frame numbers are attached.) We remark that the velocity of
their movements is just like walking naturally.

Figure 4 shows an example of acquired image sequence. The ellipses corre-
sponding to the peaks of certainty distributions of generated hypotheses in each
frame are superimposed on the frames as detected human heads. Labels of the
ellipses represent the names of generated hypotheses during tracking. Fig. 4 in-
dicates that ellipses b, c and d correctly denote the head of the persons B, C,
and D, respectively. We see that B, C and D are almost correctly tracked even
under occlusions and the change in numbers of human heads.

Cumulative certainty of generated hypotheses is shown in Fig. 5 (a). We see
that nine hypotheses were generated and that five of them were identified to
be false positives. The degree of interaction, i.e., w, between hypothesis b and
the other hypotheses is shown in Fig. 5 (b). Here, f2, f3, f4 and f5 are false
positives, all of which were generated near b. We see that interaction between
hypotheses are brought about as we expected and that the system correctly
maintain hypotheses.

5 Concluding remarks

To track multiple objects, the system has to maintain simultaneous alternative
hypotheses. Without knowing the correspondence between hypotheses and ob-
jects, hypotheses should be evaluated not relatively but absolutely. Certainty
introduced in this paper is motivated by this observation.
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Fig. 5. Cumulative certainty and the degree of interaction between hypotheses.

To establish the correspondence between hypotheses and objects, interaction
between the hypotheses is indispensable. This is because we have to eliminate
the hypotheses denoting false positives and, at the same time, to maintain the
hypotheses denoting the objects even if the number of object changes and oc-
clusions occur.
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