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Abstract

Portable high-quality sports cameras (e.g. head or hel-
met mounted) built for recording dynamic first-person video
footage are becoming a common item among many sports
enthusiasts. We address the novel task of discovering first-
person action categories (which we call ego-actions) which
can be useful for such tasks as video indexing and re-
trieval. In order to learn ego-action categories, we in-
vestigate the use of motion-based histograms and unsuper-
vised learning algorithms to quickly cluster video content.
Our approach assumes a completely unsupervised scenario,
where labeled training videos are not available, videos are
not pre-segmented and the number of ego-action categories
are unknown. In our proposed framework we show that a
stacked Dirichlet process mixture model can be used to au-
tomatically learn a motion histogram codebook and the set
of ego-action categories. We quantitatively evaluate our ap-
proach on both in-house and public YouTube videos and
demonstrate robust ego-action categorization across sev-
eral sports genres. Comparative analysis shows that our
approach outperforms other state-of-the-art topic models
with respect to both classification accuracy and computa-
tional speed. Preliminary results indicate that on average,
the categorical content of a 10 minute video sequence can
be indexed in under 5 seconds.

1. Introduction
Affordable rugged high-quality head-mounted cameras

for recording an athletes first-person point-of-view experi-
ence is the newest digital toy for professionals and amateurs
alike (Figure 1). In this paper, we present a novel approach
for quickly indexing videos to enable efficient search for
these types of first-person sports videos (Figure 2). We mo-
tivate this work with an example. Imagine that a mountain
bike racer has just finished running several laps through a
practice course and would like to review the third jump of
his second lap before he proceeds with the rest of his train-
ing. How can he locate the correct position in the video?

Figure 1. GoPro camera used to generate first-person POV videos.

Figure 2. First-person point-of-view for various sports.

A typical manual search process would usually require the
user to fast-forward through the video sequence to find the
desired location. However, if the video was indexed by ac-
tion categories, he could immediately review say, a color-
coded time index (Figure 3 and 10) and go directly to the
desired location in the video.

What kind of requirements would such functionality ne-
cessitate? An unsupervised approach would be best since
access to labelled training data may be limited and we do
not want to burden the user with a data labeling process.
A supervised solution leveraging human computation may
also be valid but would require an intensive training process.
Near real-time processing is another requirement since we
cannot expect the user to wait hours or even several minutes
for results. Finally, the extracted video feature should be
discriminative enough to differentiate between action cat-
egories but also robust enough to deal with extreme ego-
motion.

Sports videos are usually characterized by extreme ego-
motion that far exceeds the motion addressed in traditional
ego-motion analysis (e.g. wheeled vehicles or robots). This
intense camera motion translates to large frame-to-frame
displacement, significant motion parallax, motion-blur and
the rolling-shutter effect (i.e. video wobble). Methods that
require accurate feature tracking or high-quality registration
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Figure 3. Color-coded video time bar indexed by category can be
used to find ego-actions of the same category.

Figure 4. Distortion examples: projectiles, motion blur, water.

are rendered infeasible in most situations.

Though the task of image-based analysis may seem
daunting there are unique characteristics of first-person
sports videos that can also be leveraged to our advantage.
In particular, a video contains a single sport, performed with
the same person and recorded with the same camera. This
has three implications: (1) the list of possible actions is
constrained by nature of the sport (i.e. certain actions are
repeated throughout the video), (2) actions of the same cat-
egory will look similar because they are performed by the
same person (more so than across multiple actors) and (3)
actions of the same category share similar image distortion
(e.g. jumping causes a rolling shutter effect). Our approach
leverages these conditions to categorize even the most ex-
treme motions.

Furthermore, we know that human motion observed
from a first-person point-of-view is global and not local.
This means that we should be able to aggregate global mo-
tion and marginalize out local outlier motion. We also know
that motion involving the human gait has an inherent fre-
quency component. Therefore we can expect that frequency
analysis can be used as a salient feature for ego-action cat-
egorization.

To the best of our knowledge, this is the first work to
deal with the novel task of discovering ego-action cate-
gories from first-person sports videos. We propose the use
of a simple global representation of motion that is both ro-
bust and discriminative. Our proposed approach shows the
applicability of Dirichlet process mixture models to novel
real-world problems and the powerful potential of online in-
ference. We also provide a new labeled benchmark dataset
for standardized analysis of dynamic outdoor first-person
sports videos.

2. Related Work

Prior work on vision-based first-person human action
analysis has been limited to indoor activities with a focus
on hand gesture recognition. Early work with vision-based
analysis for head-mounted cameras focused on hand gesture
recognition for sign language recognition [10] and context
aware gesture recognition [11]. In recent years, there has
been a renewed interest in first-person vision with a simi-
lar focus on object recognition [7], hand gesture recogni-
tion [6, 13] and hand tracking [12]. These works are im-
portant because understanding indoor first-person activities
has a clear social impact (e.g. patient monitoring, assistive
technologies). We aim to expand the research domain by
addressing dynamic outdoor activities which involve more
full body motion.

Work with body worn sensors have also been shown to
be effective in categorizing human action and activity cate-
gories. Inertial motion sensors have been used to discover
long-term activities (e.g. working at the office, eating din-
ner) [4] and segmenting a signal into primitive units [9].
It has also been demonstrated that more complex activities
can be learned using an ensemble of body worn sensors
such as motion sensors, force sensing resistors and ultra-
wide band tags [17]. While we expect that a comprehensive
solution for first-person action analysis will require multi-
modal sensor fusion, the goal of this work is to examine the
extent (and limitations) of vision-based strategies for first-
person action categorization.

We also note that our work is different from work
on vision-based ego-motion estimation, visual odometry,
structure-from-motion and autonomous navigation because
we are concerned primarily with the task of ego-action cate-
gorization and not (necessarily) accurate motion estimation
and localization.

3. Motion Feature Extraction

As we have stated earlier, first-person sports footage can
be very noisy. We observe different types of image distor-
tion such as motion blur, the rolling shutter effect (i.e. many
sports cameras use CMOS sensors), motion parallax, and
environmental factors such as splashing water, glare and
projectiles (Figure 4). Therefore, we will need a represen-
tation of motion that is robust to a certain degree of image
distortion.

We use sparse optical flow vectors as our basic motion
feature. Although quick movement causes many false cor-
respondences, we also observe that the general direction and
relative magnitude of a subset of the flow vectors are usu-
ally consistent. We take advantage of this phenomenon and
extract the set of internally consistent flow vectors by keep-
ing only those points that can be accounted for by a planar
homography (we use RANSAC). This step effectively re-
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directional (36) frequency (16)

Figure 5. 52-dimensional motion histogram is a concatenation of
36 directional bins and 16 frequency bins.

moves flow vectors caused by bad matching or local motion
caused by other moving objects in the scene. We add fur-
ther robustness by aggregating the set of flow vectors as a
normalized motion histogram.

While designing the motion histogram we found that
there are two types of motion that are needed to discrim-
inate between different ego-action categories (details dis-
cussed in section 7.3). The first component is instantaneous
motion (directional component) and periodic motion (fre-
quency component). For example, the action of turning
one’s head has a strong directional component, while repet-
itive actions like walk and run have strong periodic compo-
nents.

The directional component of motion is encoded using
a simple 36 bin histogram indexed over the quantized joint
space of 4 flow directions, 3 flow magnitudes and 3 flow
variance (aggregate difference of flow magnitudes against
the average flow magnitude). The frequency component is
computed with the discrete Fourier transform (DFT) over
the average flow magnitude with a sliding window of 64
frames. The X (horizontal motion) and Y (vertical motion)
components are analyzed separately. The frequency com-
ponent is encoded with a histogram of 16 bins. The first 8
frequency amplitude components of the X channel and Y
channel are thresholded, normalized and added to the first 8
bins and last 8 bins, respectively. The directional histogram
and frequency histogram are concatenated to yield a motion
histogram y = [y1, . . . , yM ] where M = 52 in our repre-
sentation (Figure 5).

4. Dirichlet Process Mixture Models
Since we would like to infer the number of ego-action

categories and the motion histogram codebook automati-
cally from the data, we use a hierarchical Bayesian model
which we call stacked Dirichlet Process Mixtures. We be-
gin with a brief explanation of the Dirichlet Process (DP).
Readers already familiar with Dirichlet process mixtures
(DPM) can skip to Section 5.

4.1. Understanding the Dirichlet Process

To better conceptualize the Dirichlet process it is helpful
to compare it to the finite Dirichlet distribution. A Dirichlet
distribution is defined as

Dir(π;α1, . . . , αK) = B(α1, . . . , αK)−1
K∏
k=1

παk−1
k (1)

where α1, . . . , αK are the non-negative parameters of the
distribution, the normalization constant B(α1, . . . , αK) is

the Beta function of the parameters, and π = {π1, . . . , πK}
is a K-dimensional probability function where

∑
k πk = 1.

A useful analogy is to interpret the Dirichlet distribu-
tion as a big urn containing many biased K-faced dice,
where a single draw from the urn yields one biased K-
faced die. For an arbitrary die drawn from the urn, the ex-
pected value of the probabilities over each of the K faces
(outcomes) is defined as E[π] = {α1

α0
, . . . , αK

α0
} where

α0 =
∑
k αk. The expected value of the probability of a

single face (outcome) is E[πk] = {αk

α0
}. Alternatively, the

vector µ = {α1

α0
, . . . , αK

α0
} can be used to write the Dirich-

let distribution as Dir(π;α0µ). Next we show how this
alternative parameterization is related to the DP.

The Dirichlet process can be understood as a generaliza-
tion of the Dirichlet distribution with infinite K.

DP (π;α0,µ) = lim
K→∞

1

B(α1, . . . , αK)

K∏
k=1

παk−1
k (2)

The parameter α0 is typically called the concentration pa-
rameter and µ is called the base distribution (where µ is
continuous in the general case). The expected value of the
probability of a given outcome is defined as E[πk] =

αk

α0
or

E[π] = µ in vector form.
The Dirichlet distribution (and the DP) is a useful prior

distribution when one is working with K dimensional his-
tograms. When a histogram is interpreted to be generated
from multiple draws from a probability function π, the like-
lihood of the histogram takes the form of a product of prob-
abilities (formally called a multinomial distribution). When
the multinomial distribution is multiplied with a Dirichlet
distribution (also a product of probabilities), the result is
another Dirichlet distribution. Formally, this result is due to
the fact that the Dirichlet distribution is the conjugate prior
of the multinomial distribution. We will see how this prop-
erty is used in Section 6.1.

4.2. Chinese Restaurant Process

An alternative perspective used to explain the DP is the
Chinese restaurant process (CRP). A CRP describes the pro-
cess of generating a probability distribution π from a DP.
Using the analogy of customers arriving at a Chinese restau-
rant, the CRP seats (assigns) the newest d-th customer to a
table k, denoted as zdk (shorthand for zd = k), according to
the following probability distribution.

p(zdk|z1, . . . , zd−1;α0) =

{
c(k)
α0+d

, k ≤ Kd
α0

α0+d
, k > Kd

(3)

where zi is the table assignment of the i-th customer and
c(k) is the current number of points assigned to cluster k
and Kd is the number of occupied tables. The probability
of being seated at a certain table and the number of occu-
pied tables Kd depends on how the first d − 1 customers
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have been seated. The important result to observe is that the
CRP (equivalently the DP) generates a (potentially infinite)
discrete probability distribution π. Again, we will see how
this representation is utilized in section 6.1.

4.3. Dirichlet Process as a Mixture Prior

A typical mixture model is composed of an observation
x and a (latent) topic z, where the model is specified by the
observation likelihood p(x|z) and the prior over mixtures
(also called topics or categories) p(z). In a discrete para-
metric model, p(z) is a discrete K valued probability func-
tion. In a Bayesian Dirichlet process mixture model, the
prior distribution over the mixture distribution π , p(z) is
the Dirichlet Process DP (π;α0,µ).

We are most interested in the use of DPMs to discover
the number of mixture components from data. Since a
proper treatment of the DP involves computing complex
integrals over the infinite DP, in practice, approximate in-
ference algorithms are used to estimate the number of mix-
tures. Typical inference algorithm include MCMC [5], vari-
ational inference [1], multi-pass online inference [15] and
online beam search [2].

5. Stacked Dirichlet Process Mixtures
In our framework we take a sequential bottom-up ap-

proach, in which we learn the motion codebook with a sin-
gle DPM and then pass the results to a second DPM to learn
the ego-action categories. This stacked architecture is simi-
lar to a hierarchical Dirichlet process mixture model in that
topics are organized in a hierarchy and all topics (i.e. ego-
actions and codewords) at every level in the hierarchy are
constrained to share the same discrete set of possible obser-
vations (i.e. motion histograms). The two model topologies
are shown in Figure 6. The use of hierarchical mixture mod-
els have been shown useful modeling hierarchical grouping
in such tasks as surveillance videos [16], documents analy-
sis [14] and object categorization [8].

The main advantage of the stacked DPM is that it allows
us to decouple the inference over a hierarchical structure
into simpler inference over two DPMs. We show in the next
section how this decoupling allows us to run very fast online
inference.

6. Task of Inference
First, a single video is cut into D equally sized video

splices d ∈ D, where each video splice d is made up of
Nd frames (Nd=60 in our experiments) and each frame is
indexed by n ∈ Nd. The input to our model is a set of
motion histograms Y = {y11, · · · ,ynd, · · · ,yNDD} gen-
erated from each frame n in the video. As the output, our
model returns the ego-action index (cluster assignments)
Z = {z1, · · · , zd, · · · , zD}, where zd is an indicator vari-

M
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D ∞

(a) (b)
Figure 6. (a) Hierarchical Dirichlet Process Multinomial Mixture,
(b) Stacked Dirichlet Process Multinomial Mixture. Graphs drawn
using explicit cluster indicators and stick-breaking representation.

able that contains the ego-action cluster assignment for the
d-th video splice in the video. The total number of ego-
action clusters K is estimated as part of the inference pro-
cess.

The entire inference process is composed of two unsu-
pervised learning steps. In the first step, the motion code-
book is learned and in the second step, the ego-action cat-
egories are discovered. What is unique about our approach
is that we efficiently learn the codebook and accumulate a
histogram over the codewords for each video slice in a sin-
gle pass over the data. We are enabled to do this by online
inference [15] which we outline below.

6.1. Inferring the Motion Codebook

The input into the first DPM is a set of motion his-
tograms Y which are processed sequentially. The output
of the first DPM is a sequence of codeword assignments
X = {x11, · · · , xnd, · · · , xNdD}, where each indicator
variable xndh (shorthand for xnd = h) has been assigned
to the codeword h that maximizes the following posterior
probability.

ĥ = argmax
h

{
p(xndh|ynd,Y−nd,X−nd)

}
(4)

∝ argmax
h

{
p(xndh|X−nd)p(ynd|Y−nd,Xnd)

}
(5)

Here Y−nd is the set of all past observations (motion
histograms) excluding ynd and X−nd is the set of all
past codeword assignments excluding xnd. The hyper-
parameters (DP concentration α0, Dirichlet parameters β0)
have been omitted from the notation for simplicity. Using
Bayes rule and dropping variables due to conditional inde-
pendence, this posterior can be decomposed (Eq. 5) into
two terms: (1) the current prior over cluster assignments
and (2) the likelihood of the observed motion histogram.

The first term is the DP prior probability of a cluster as-
signment and is modeled with a mixture of DPs with L dif-
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ferent concentration parameters.

p(xnd|X−nd) =
L∑
l

p(α0l)p(xnd|X−nd;α0l) (6)

where each DP indexed by l is modeled using a CRP.
This allows the DP concentration parameter to be free

and the weights p(α0l) over the CRPs can be inferred online
with the following update.

p̂(α0l) = p(α0l)p(xnd|X−nd;α0l) (7)

The second term is the motion histogram likelihood
and must be computed by integrating over the prior con-
ditional Dirichlet distribution q over the probability distri-
bution νh = {νh1, . . . , νhM}.

L = p(ynd|Y−nd,X−nd, xndh) (8)

=

∫
νh

p(ynd|νh)q(νh|Y−nd,X−nd, xndh)dνh (9)

= Eq[p(ynd|νh)] (10)

The first term inside the integral of equation (9) is the multi-
nomial distribution p(ynd|νh) =

∏M
m p(νhm)ymnd and it

describes the likelihood of multiple draws from the discrete
distribution νh of the hth codeword. The second term in-
side the integral is the conditional Dirichlet distribution q,
which is a product of the multinomial distribution of all past
observations and a base Dirichlet distribution.

Fortunately, the final form of the likelihood L conve-
niently reduces to a product of simple fractions,

Eq[p(ynd|νh)] ∝
M∏
m

[
c(h,m) + β0/M∑
m′ c(h,m′) + β0

]ymnd

(11)

where c(h,m) is the total count of flow vectors in binm ac-
cumulated from all motion histograms that belong to code-
word h and ymnd is the count of the mth bin in the motion
histogram ynd. This is because the Dirichlet distribution is
the conjugate prior of the multinomial distribution (recall a
histogram follows a multinomial distribution) and the con-
ditional expected value of the Dirichlet parameters can be
computed as the ratios of the empirical evidence c(h,m)
plus the concentration hyper-parameter β0 (which is set to
1 for all experiments).

Since this inference algorithm only adds new codewords
to the codebook (i.e. never removes codewords), the order
of the codewords is always preserved. This property allows
us to accumulate the histogram of codewords x′d in a single
pass by keeping a record of the counts over codewords for
each video splice d.

We also note that while the CRP does allow for the size
of the codebook to be infinitely large, the size of the code-
book is in practice log-bounded (Figure 7).
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Figure 7. Logarithmic growth of the codebook for the PARK se-
quence.

6.2. Inferring Ego-action Categories

The input to the second DPM is a set of histograms over
codewords, x′d = {x′1, . . . , x′H}, for every video splice d ∈
D, where H is the total number of motion codewords. The
output is a set of assignments Z = {z1, · · · , zd, · · · , zD},
where each assignment variable zdk (shorthand for zd = k)
maximizes the posterior distribution.

k̂ = argmax
k

{
p(zdk|x′d,X′

−d
,Z−d)

}
(12)

where X′−d is the set of all previous observations (code-
word histograms) excluding x′d and Z−d is the set of all
previous clusters (ego-action category) assignments exclud-
ing zd. The posterior is in the same form as equation (4) and
is decomposed in the same way as equation (5).

In the first quantization step, inference was performed at
every frame. In the second layer, we now run inference over
several permutations of the observed motion histograms, to
search for a more optimal clustering. We can identify a
good ordering r̂ (aD dimensional vector dictating the order
of the data) that maximizes argmaxr{L̃r}, where L̃ is the
pseudo marginal likelihood [3].

L̃r =

D∏
d

p(xd|X′
−d
r ,Z−dr ) (13)

=
∏
d

K∑
k

p(zdk|X′
−d
r ,Z−dr )

×
∫
p(x′d|ωk)q(ωk|X′

−d
r ,Z−dr )dωk (14)

≈
D∏
d

K∑
k

p(zdk|X′
−d
r ,Z−dr )Eq[p(x

′
d|ωk)] (15)

Again, the integral over the parameters ωk of the Dirich-
let distribution associated with the kth ego-action category
reduces to the same fractional form as equation (11). To
speed up computation q(ωk|X′r,Zr) is used in place of
q(ωk|X′−dr ,Z−dr ). We note that other strategies like beam
search [2] can be implemented to improve over this naive
search strategy. However, as we will show in the next sec-
tion, we found the random search strategy to be quite suffi-
cient.
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Biking (BIK) Surfing (SRF) Skiing (SKI) Slope style (SLO) Snowboarding (SNO) Horseback riding (HOR)
Figure 8. YouTube sports dataset.

7. Discovering Ego-action Categories
7.1. Evaluation Videos

To evaluate the performance of our method we need both
choreographed video sequences to run controlled experi-
ments and a broad span of real-world videos to observe the
performance of our method across several sport genres.

We choreographed two videos. The first video (QUAD)
consists of 124 video splices (a video splice contains 60
frames) and contains 11 different ego-actions. This video
was primarily used to show how the design of our motion
features effect performance. The second video (PARK) is a
25 minute workout video which contains 766 video splices
and contains 29 different ego-action categories. The PARK
sequence was used to investigate the performance of our
method over a larger set of ego-action categories.

We also utilized six real-world first-person YouTube
sports videos (images in Figure 8) from mountain biking
(BIK), longboard surfing (SRF), skiing (SKI), slope-style
(SLO), snowboarding (SNO) and horseback riding (HOR)
(details in Table2). These publicly available datasets show
the performance of our method over multiple sports genres.
All sequences used for evaluation were recorded with the
GoPro HD camera (Figure 1) and the ego-action category
names for all sequences are given in Table 1.

7.2. Matching Categories for Analysis

We use the F-measure (F ) to measure performance. The
F-measure is the harmonic mean of the precision P and re-
call R, defined as F = 2PR/(P + R). Values range from
0 to 1, where 1 represents perfect performance. To compute
the average F-measure we must find the one-to-one corre-
spondence between the ground truth labels to discovered
ego-action categories. We perform a greedy search by iden-
tifying the best match (i.e. best F-measure) between a sin-
gle ground truth label and a discovered ego-action category.
We remove that pair as a possible future candidate, and re-
peat the process for the remaining ground truth labels and
discovered ego-action categories. When the number of dis-
covered ego-action categories is not equal to the number of
ground truth categories, the extra categories are appended to

Table 1. Ego-action category names.
QUAD jump, run, leftstand, rightupdown,updown, stand, rightleft, run-

turnleft, standturnright, walk, walkinplace
PARK upright, jog, updown, downright, downforward, slowjog, run,

twist, walk, pullups, downrightleft, crawnet, downleft, down,
right, stop, ditdown, up, slowwalk, pivotright,walkleft, standup,
lookdown, left, exit, slide, reachup, hold, rest

BIK quicklookleft, bumpyright, fastright, curveleft, straight, rough,
cruise, left, straightright, jump, highjump

SRF underwater, backrightleft, left, hitwave, forwardback, situnderwa-
ter, backright, lightpaddle, standup, forward, sitstop, kickpaddle

SKI rotateleftdown, lookup, downright, hopdown, turnrightleft, turn-
right, slowdownleft, upturnright, leftright, turnleft, turnleftright,
slowdown, smoothright, wedgeleft, hopturnleft

SLO highfive, spin, liftspindown, left360, pedal, land, rotateright, left-
rightshake, straight, updownshake, leftloopup, inplane360, left-
down, rampup

SNO lookdownright, lookrightrotate, rightdownright, hardfrontedge,
shakefalldown, lookup, shakelookleft, standup, rightface, fallslide,
rotateright, bumpy, rotateleft, upshake, shake, shakeright, still, for-
wardbackedge, lookleftright, hardbackedge, lookrightleft, leanfor-
ward, hitbump, backedge, lookright, forward

HOR intro, jump, speedup, landing, startrun, prepjump, pulltrot, yank-
trot, jumpland, slowtrot, straight, slowright, landjump, lowjump,
bumptrot

Table 2. YouTube sport video details and performance.
BIK SRF SKI SLO SNO HOR

Video splices 104 26 34 35 77 100
Num. ego-actions 24 12 18 15 26 15
Avg. F-measure 0.54 0.64 0.94 0.47 0.67 0.49
Comp. time (s) 0.44 0.10 0.18 0.45 0.57 0.35

the list with an F-measure of zero. The average F-measure
is computed from a weighted average of the F-measures of
each category. Categories with no correspondences always
lower the average F-measure.

7.3. Feature Design

As stated earlier, each flow vector is binned depending
on the flow direction, flow magnitude and flow variance.
Flow direction was quantized into 4 directional bins (left,
right, up, down) although tests showed similar performance
for finer bins. Magnitude was quantized into three bins
in increments of 8, which were determined from perfor-
mance on the QUAD sequence. The bins roughly divide
motion magnitudes into small (1-8), medium (8-16) and
large (16+). In addition to direction and magnitude, we ob-
served that the variance of the magnitude of flow vectors
for a single frame was also an informative feature for dis-
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Figure 9. Peaks in flow variance produced by actions with ex-
treme changes in acceleration caused by floor impact (e.g. jump).
Horizontal axis is time and the vertical axis is the variance. The
eight peaks are generated by the four repetitions of jump and run.

criminating between ego-actions. The variance bins divide
motion magnitude variance into small (0-9), medium (9-18)
and large (18+). Figure 9 shows how variance peaks for
ego-actions with large changes in acceleration such as run
and jump. For the QUAD sequence, using only the direc-
tional component gave an average F-measure score of 0.83
and using only the frequency component yielded 0.72. The
joint use of both components returned a score of 0.93. This
trend was found to be true over all of our videos.

Based on the observation that most actions have a single
dominating axis led us to represent periodic human motion
using frequency analysis on the horizontal axis and vertical
axis independently. The amplitude of the top eight frequen-
cies for each axis were treated as bins to capture dominant
periodic motion. Each channel was thresholded using the
running average of that channel and absolute thresholds for
x and y, tx = 50 and ty = 200 respectively. When the
cumulative sum of the frequency bins passed 500, the fre-
quency channels were normalized to sum to 500. Similar
results were obtained for normalization values between 250
and 1000.

7.4. Performance Across Sports Genres

For all videos, we labelled every video splice (2 second
segment) by visual inspection to generate the ground truth.
Then discovered labels were compared against the ground
truth using the F-measure. A visualization of the perfor-
mance across the videos are shown in the form of matching
matrices in Figure 11.

As expected, we perform better on choreographed videos
because the ego-actions categories were known in advance
and ego-actions occurred in sequence over long durations.
The average F-measure performance was 0.93 and 0.72, for
the QUAD and PARK sequence, respectively. Although the
PARK sequence is significantly longer than the QUAD se-
quence and contains almost three times as many actions, we
get relatively good performance. An interesting observation
we made was that certain actions, for example jog, change
over time (i.e. the athlete jogs slower toward the end of the
25 minute work out ). This makes sense since we expect
that the athlete will become more fatigued toward the end
of the workout. However, in our current model we are not
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Figure 11. Matching matrix visualization of performance across
sports genres. Vertical axis is the ground truth label and the hori-
zontal axis is the discovered ego-action categories. Perfect perfor-
mance yields an identity matrix.

able to adapt these types of changes over time.
Across the sports genres, skiing, surfing and snowboard-

ing yielded higher scores over an average F-measure of 0.6,
while horseback riding, mountain bike, slope-style scored
below 0.6 (see Table 2). We attribute this difference in per-
formance to the fact that the former sports genres contain
strong periodic ego-actions while, the latter genres contain
less periodic signals, with the exception of horseback rid-
ing. Although we expected horseback riding to produce
more salient periodic ego-actions, we found that the prox-
imity of the horse and the riders hands to the camera had
an adverse effect on the optical flow calculations. We also
attribute the difficulty with the bicycle sequences to sym-
metric motion fields (e.g. zoom and in-plane rotations) gen-
erated by a fast moving (or spinning) bicycle. Our current
representation can not differentiate between symmetric mo-
tion fields.

7.5. Comparative Evaluation

We compare the top-level DPM with online inference
(DPM-OL) against the DPM with variational inference
(DPM-VI), latent Dirichlet allocation with variational infer-
ence and sequential importance sampling (LDA-VI), prob-
abilistic latent semantic analysis with the EM algorithm
(PLSA-EM), a naive Bayesian mixture model with the EM
algorithm (NBM-EM) and K-means clustering. The maxi-
mum number of iterations was set to 100 and the stop crite-
ria was set to 10−5 (change in the log-likelihood). Each
algorithm was randomly initialized 20 times, except for
DPM-OL and K-means which were initialized 200 times.
The true number of actions were given to all models except
for the two DP models.

Despite the fact that we provide the true K for the non-
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Figure 10. Color coded ego-action category index for the QUAD sequence discovered with our method. Horizontal axis is time and colors
represent different ego-action categories.

Table 3. Detailed comparison for choreographed datasets.
QUAD F-measure P R K sec.

DPM-OL 0.93 0.95 0.92 13 0.47
DPM-VI 0.92 0.94 0.92 12 10.12
LDA-VI 0.87 0.89 0.87 11 3.38

PLSA-EM 0.89 0.91 0.89 11 2.88
NBM-EM 0.66 0.59 0.91 5 0.25
K-means 0.89 0.89 0.91 9 1.44

PARK F-measure P R K sec.
DPM-OL 0.71 0.76 0.71 37 8.69
DPM-VI 0.61 0.66 0.62 40 73.64
LDA-VI 0.56 0.56 0.66 27 30.99

PLSA-EM 0.53 0.58 0.59 29 63.51
NBM-EM 0.44 0.38 0.73 10 3.75
K-means 0.53 0.62 0.52 29 25.04

DP models, we observe that the online inference DPM-OL
performs the best and works surprisingly well (Table 3).
Interestingly, results show that non-DP models tend to un-
derestimate the true K. Also, alternating algorithms maxi-
mizing non-convex functions seem to be more sensitive to
initialization values and require many trials to find a good
starting point.

7.5.1 Computation Time

The wall-clock computation times for our comparative ex-
periments are given in Table 3. Our approach ranks second
in speed next to the EM algorithm with the naive Bayes mix-
ture model (NBM-EM). Taking the average computation
time across datasets, 2 minutes of video (60 segments) can
be processed in less than a second, with our method. Varia-
tional inference with the DPM takes significantly more time
than the other models because the dimensionality of the
variational distribution needs to be sufficiently large (e.g.
100 for our experiments). All experiments were performed
with a 2.66 GHz CPU.

8. Conclusion
In this paper we have introduced the novel task of discov-

ering ego-action categories from first-person sports videos.
We have described the power of the Dirichlet process to
infer motion codebooks and ego-action categories with no
training data. Furthermore, we have shown that DPMs can
be applied to difficult real-world problems without incur-
ring the cost of computational complexity. In particular,
we have shown that online inference can perform on par
with other types of approximate inference over topic mod-

els, while also providing a significant savings in compu-
tational cost. Our preliminary experiments suggest that
vision-based ego-action analysis can be successfully ap-
plied to dynamic first-person videos.
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