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光学解析に基づく距離画像の位置合わせ

トマ　ディエゴ1,a) 杉本晃宏1,b)

概要：奥行きと色を同時に撮影できる距離画像センサを使って異なる位置から取得した２枚の距離画像の
位置合わせを行う手法を提案する. 撮影物体の幾何特徴を利用して位置合わせを行う従来手法に対して, 光
学特徴を利用した位置合わせ手法を提案する. 物体表面の色の見え方は, 照明条件, 視点, 物体表面の向き,

物体表面の反射特性によって決まるが, これらの関係に基づいて光学特徴を抽出し, それを用いた類似度を
定義することによって位置合わせのための変換を評価し, 頑健で正確な位置合わせを実現する手法を提案
する. 画像撮影の照明条件における仮定を, 大まかに分かっている単一点光源の場合, 未知の少数の点光源
の場合, 未知の複雑照明の場合, と段階的に緩和し, より一般的に適用できるように手法を順次, 補強・拡張
する. 光学解析を位置合わせ問題に取り入れた提案手法によって, これまでは実現できなかった未知複雑照
明下での位置合わせが可能となった.
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Range Image Registration Based on Photometry

Diego Thomas1,a) Akihiro Sugimoto1,b)

Abstract: In this paper we address the use of photometry for accurately registering pairs of range images
devoid of salient geometric features. Our contribution is three fold: first, we propose a robust local descriptor
that overcomes the drawbacks of current methods using albedo for Lambertian objects under simple illumi-
nation; second, we propose an albedo estimation strategy for the case of specular objects illuminated by a few
unknown point light sources that enlarges the range of applications of our previously proposed registration
method; third, we propose a photometric metric for registering Lambertian range images under unknown
general illumination and prove its usefulness through a practical registration method. With these methods,
we make advances in using photometry for registering pairs of overlapping range images and significantly
enlarge the practicability and range of applications of range image registration.

Keywords: Range images, registration, photometry, albedo.

1. Introduction

3D modeling of a real scene stands for constructing a

virtual representation of the scene, generally simplified

that can be used or modified at our will. Constructing

such a 3D model by hand is a laborious and time consum-

ing task, and automating the whole process has attracted

growing interest in the computer vision field. The 3D

modeling process is summarized and illustrated in Fig. 1.

In particular, the task of registering (i.e. aligning) dif-
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ferent parts of the scene (called range images) acquired

from different viewpoints is of crucial importance when

constructing 3D models. During the last decades, re-

searchers have concentrated their efforts on this problem

and proposed several methodologies to automatically reg-

ister range images ([3], [5], [14], [20]).

Aligning overlapping range images using geometric fea-

tures is the most popular approach to 3D registration and

has been extensively studied over the past decades. Pop-

ular geometric features are for example, the position of

the point, the normal at the surface or the curvature. In

spite of the advantages of using geometric features, several

limitation cases have been reported. In particular, using

geometric features alone for registration inevitably fails if
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the captured range images are devoid of salient geometric

features.

In addition to geometry, textural information is also

available. By textural information, we denote the infor-

mation derived from the appearance of the object’s tex-

tured surface. This can be the color reflected by the object

surface towards the scanning viewpoint, the chromaticity

or the intensity for example. By using the color images in

addition to geometry it becomes possible to some extent to

overcome the problem of registering range images devoid

of salient geometric features. However, the appearance of

the object changes depending on its pose, viewpoint or

illumination. As a consequence, the direct use of textural

information is, in general, unreliable.

The recent advances and breakthroughs in understand-

ing and modeling image formation ([2], [22], [26]) bring

new possibilities for 3D registration using photometry. By

photometry, we denote the relationship between geome-

try, reflectance properties and incident illumination. By

contrast with the textural features, we denote by photo-

metric features the surface intrinsic features that define

its reflectance properties (such as the albedo for exam-

ple). A few works have been reported that investigate the

use of albedo for range image registration. However, they

rely on a precise estimation of albedo from the captured

color and geometry, and thus on a precise estimation of

the surrounding illumination. Existing methods have thus

a limited range of applications.

In this work, we further investigate the use of photom-

etry (i.e. the relationship between geometry, reflectance

properties and illumination) for range image registration.

First, we propose a robust descriptor using albedo that is

permissive to errors in the illumination estimation. Sec-

ond, we propose an albedo extraction technique for spec-

ular surfaces that enlarges the range of materials we can

deal with. Third, we propose a photometric metric under

unknown lighting that allows registration of range images

without any assumptions on the illumination. With these

proposed methods, we significantly enlarge the practica-

bility and range of applications of range image registra-

tion.

2. Local descriptor using albedo distri-
bution

The most common approach to registering range images

is (1) to find correspondences in points between two over-

lapping range images and then (2) accordingly estimate

the transformation in aligning the two range images. The

most well-known approach to fine registration is the iter-

ative closest point (ICP) [5], [38]., which iterates the two

above mentioned steps until convergence is reached.

Several methods for registering range images can be

図 1: The 3D modeling process

found in the literature that use geometric features for

computing correspondences in points ([4], [14], [15], [18],

[21], [37]). However, we assume that the range images to

be registered have simple textured shapes (like cylinders)

and are thus devoid of salient geometric features. Con-

sequently, textural features, such as color ([7], [10], [16]),

chromaticity ([23]) or intensity ([3], [20], [36]), or photo-

metric features such as the albedo, in addition to geomet-

ric features are required to compute correspondences in

points.

In particular the albedo is a photometric property that

is unaffected by the pose of the object, the illumination

conditions, or the viewpoint, and is thus useful for match-

ing. Cerman et al. [8] proposed using the albedo differ-

ence to match points to register range images. However,

this point-based approach is sensitive to data noise and

requires detailed knowledge on illumination conditions.

Therefore it cannot be applied in practice to real data.

We introduce a region-based approach to using re-

flectance attributes, namely the albedo, for robust fine

registration of Lambertian objects under rough estimates

of illumination. Because retrieving the albedo on the sur-

face of a Lambertian object is sensitive to estimates of il-

lumination, the albedo of a point cannot be directly used

under rough estimates of illumination. We thus employ

the local distribution of albedo for registration. Our pro-

posed method uses adaptive regions to model the local

distribution of albedo on the object surface, which leads

to robust extraction of attributes against illumination esti-

mates. These regions are grown using a level-set method,

allowing us to exclude outliers and then to define more

reliable attributes. We define a robust metric, using the

principal component analysis (PCA) of each region to find

correspondences in points. This is a stable and powerful

metric to maximize the number of correct matches, even

under rough estimates of illumination. Moreover, we re-

ject remaining mismatches by enforcing the rigidity con-

straint on surfaces and then estimate transformation using
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the weighted least squares (WLS) method. Our method

has advantages with rough estimates of illumination and

with large amounts of noise. These advantages allow us to

use simple models of illumination to register range images.

Our experiments using synthetic and real data demon-

strate that our method is robust. We assume in this work

that the surfaces’ textures present sufficient saliency to

constrain the matching of two overlapping range images.

We do not consider uniform or ’salt and pepper’ textures,

or repetitive patterns. We also assume that the objects do

not present self-occlusions, shadows nor inter-reflections.

Note that a part of this work appeared in [29], [33]

2.1 Proposed method

Our proposed method carries out the registration pro-

cess by successively estimating rigid transformation, un-

til a convergence criterion is satisfied or a maximum of

iterations is completed. Matches are obtained by evalu-

ating the similarities between attributes of points, which

are defined by adaptive regions representing the local dis-

tribution of albedo on the surfaces of objects. Incorrect

matches are then eliminated using the rigidity constraint

of surfaces. The transformation is then estimated by min-

imizing the distances between matched points. Fig.2 has

a flowchart of our proposed approach.

This framework allows simple textured range images

to be robustly and accurately registered even with large

amounts of data noise and rough estimates of illumina-

tion.

2.1.1 Generation of adaptive region

We define a region for each point of the two range im-

ages to obtain reliable attributes for each to find corre-

spondences between points. The main idea here is to ob-

tain a reliable representation of the local distribution of

albedo. Level-set methods, which are widely used for seg-

mentation, appear to effectively model complex shapes in

textured images and are robust to data noise. Therefore,

we adaptively grow regions using a level-set method.

2.1.1.1 Level-set method

A region is defined by a contour that we define with

a level-set method (fast marching algorithm [13]). A

contour is defined as the zero level-set of a higher di-

mensional function called the level-set function, ψ(X, t)

. The level-set function is then evolved under the con-

trol of a differential equation. The evolving contour can

be obtained at any time by extracting the zero level-set

Γ(t) = {X | ψ(X, t) = 0}.
We use a simple form of the level-set equation:

d

dt
ψ = −P (x)‖�ψ‖, (1)

where P is a propagation (expansion) term. This prop-

agation term of the level-set function is next defined in

terms of a speed image. In our approach, the propagation

of the contour is defined using the gradient of the albedo

such that the propagation term is high in uniform areas

and low close to pattern boundaries. Namely, we define

a (propagation) speed image by applying a sigmoid fil-

ter to the gradient magnitude image. We define the zero

level-set for a given point as the contour propagated at a

certain time T (for example, T = 0.2 seconds) from the

point. As a result, a reliable region is adaptively generated

depending on each point.

We then transform each region into their local coordi-

nate system so that the comparison between two regions

becomes independent of the pose of the object. That is,

we transform a region into the coordinate system defined

by the normalized principal axis computed for this region.

The local distribution of albedo of 3D points inside this

region then defines an attribute for each point. The at-

tributes obtained in this way enhance robustness in eval-

uating similarity to find correspondences.

2.1.2 Evaluation of similarities

We define a similarity metric between two points using

their attribute to find correspondences across two range

images (Range Image 1 and Range Image 2 ).

Letting p be a point in Range Image 1 and q be a point

in Range Image 2, we denote the regions corresponding to

p and q by R(p) and R(q), respectively. For each point

m ∈ R(p), we define its corresponding point n(m)q ∈ R(q)

(Fig. 3). The corresponding point n(m)q is defined by

arg min
x∈R(q)

(‖T (−→pm)−−→qx‖2). (2)

For each pair (m,n(m)q), we define a weight ω(m,q) such

as

ω(m,q) = 0 if ‖T (−→pm)−−−−−→
qn(m)q‖2 > thresh,

ω(m,q) = 1 if ‖T (−→pm)−−−−−→
qn(m)q‖2 ≤ thresh,

(3)

where thresh is a distance threshold (e.g., 0.4 mm if the

resolution of range images is 0.5 mm). We can similarly

define the corresponding point and weight for each point

in R(q).

The similarity function between two points p and q is

then defined as the weighted sum of the differences of the

albedo of corresponding pairs:

L(p, q) =
size(R(p)) + size(R(q))

(
∑

m∈R(p) ω(m,q) +
∑

m∈R(q) ω(m,p))2
×

{ ∑
m∈R(p)

ω(m,q)‖
−−−−→
alb(m)−−−−−−−−→

alb(n(m)q)‖22+
∑

m∈R(q)

ω(m,p)‖
−−−−→
alb(m)−−−−−−−−→

alb(n(m)p)‖22
}
,

(4)

where size(R(·)) is the number of points in R(·) and−−−−→
alb(m) is the albedo vector of point m, computed using

the Lambertian model of reflectance for each color chan-
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図 2: The flowchart of our proposed method.

図 3: Searching for corresponding point of m.

nel:
−−−−→
alb(m) =

−−→
c(m)

−−−−−−→
norm(m)�M

−−−−−−→
norm(m)

, (5)

where
−−−−−−→
norm(m) is the normal of the surface at point m,

M is the illumination matrix and
−−→
c(m) is the RGB vector

of point m.

If p and q are matches and two regions R(p) and R(q)

represent the same part of the object viewed from differ-

ent viewpoints, then m ∈ R(p) and n(m)q ∈ R(q) are

two sampled points with small distance (the distance be-

tween the two points is smaller than the resolution of the

range images) viewed from different viewpoints. Thus,

their albedo is likely to be similar. Therefore, the func-

tion, L, becomes small for points p and q. In contrast, L

increases for points with different regions. As we can see,

support by corresponding points inside the region defines

the similarity between two points of interest. This leads

to similarity being robustly and stably evaluated.

2.1.3 Matching

We dynamically create a matching list based on simi-

larity scores computed as explained above. We search for

a set of matches such that each point has at most one cor-

responding point and that the sum of the scores between

all matches is minimized.

We compute a list of possible matches for each point

sorted in the ascending order of similarity scores. Tak-

ing into consideration computational time, we enforce a

maximum tolerance threshold for possible matches. The

matching list is then iteratively and dynamically con-

structed. The match with the lowest similarity score at

each iteration is chosen and added to the matching list.

The two matching points are then removed from all the

lists of possible matches and these lists are updated ac-

cordingly (resorted). We iterate this process until no more

possible matches remain to obtain the final matching list.

At the end of this step, we have a reliable and consistent

list of matches that does not contain any isolated points.

Indeed, the region grown from an isolated point is empty

and this point will not be a candidate for any match.

2.1.3.1 Elimination of incorrect matches

The list of matches that is obtained cannot be always

directly used as input in the step to estimate transforma-

tion. This is because large amounts of noise or repetitive

patterns in the albedo distribution may cause incorrect

matches. We therefore remove such incorrect matches to

enhance the robustness of estimating transformation fur-

ther. To evaluate the accuracy of matches, we use the

rigidity constraint of surfaces. This is because the rigidity

constraint does not depend on the intensity or normals

and it is therefore robust against data noise.

For two corresponding pairs, (p, q) and (p′, q′), in the

range images P and Q, we consider point pairs (p, p′) and
(q, q′), which represent the same points viewed from dif-

ferent viewpoints. Assuming that surfaces are rigid, we

can see that distances ‖−→pp′‖2 and ‖−→qq′‖2 should not dif-

fer too much. That is, we define d by representing the

difference between ‖−→pp′‖2 and ‖−→qq′‖2:

d = |‖−→pp′‖2 − ‖−→qq′‖2|. (6)

If (p, q) and (p′, q′) are correct matches, then d should be

smaller than a threshold, Tdist (e.g., 1.0mm, for a reso-

lution of 0.55mm). This gives us the rigidity constraint

(see Fig. 4).

Each pair in the list of matches is evaluated with all the

other pairs in the list. If the number of pairs that violates

the rigidity constraint exceeds a certain percentage, Perc

( e.g., 50%), of the pairs, then the current pair is consid-

ered to be an incorrect match and is removed from the

list.

2.1.3.2 Estimation of rigid transformation

We use the WLS method [19] to estimate transforma-

tion as accurately as possible. It weights each pair with

the Euclidean distance between two corresponding points

during the least squares minimization. These weights

represent the feasibility of the correspondence of paired

points. Minimization is iterated while updating the weight
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図 4: Principle of rigidity constraint.

of each pair. The resulting transformation obtained with

this method is more accurate than that with the standard

least squares method.

2.2 Experiments

We evaluated our method using synthetic and real data

and compared it with ICPA (which is the most recent

registration method that uses albedo).

To evaluate the registration results, we use an angu-

lar measure of errors for rotation like Barron et al. [1]

and the Euclidean error for translation. Let (Rg, Tg) be

the ground truth transformation and (Re, Te) be the es-

timated transformation with Rg, Re rotations and Tg, Te
translations. A rotation, R = cos(α2 )+

−→u sin(α2 ), is repre-
sented using quaternions, where α is the angle of rotation

and −→u is the unit vector representing rotation axis. Let

res be the resolution and d the depth of range images, we

define err, which is the error of the obtained transforma-

tion as:

err =
Θd+ ||Tg − Te||

res
, (7)

where Θ is the angle between the normalized ground truth

rotation
Rg

||Rg|| , and the normalized estimated rotation,
Re

||Re|| . The err represents the error in terms of neigh-

boring points. It is thus an objective and informative cri-

terion to evaluate the accuracy of the different methods

of registration.

2.2.1 Evaluation with synthetic data

We conducted experiments with synthetic data to test

the robustness of the proposed method against data noise,

changes in illumination and changes in initial relative

poses. The synthetic data were obtained with a 3D mod-

eler software (3D Studio Max) (see Fig. 5 ). The exact

albedo image and the exact illumination (which represents

a single distant light-source point), modeled with a direc-

tion and a color vector, were known. We estimated the

albedo using an approximation of the exact illumination

to test the robustness of our proposed method.

Figure 6 plots the quantitative evaluation of registra-

(a) First image. (b) Second image.

図 5: Input synthetic data.

tion results in terms of averages and variances in error in

results obtained with different estimates of illumination.

In this experiment, we randomly rotated the direction vec-

tor of exact illumination to estimate albedo values. For

all values of the noise variance, we applied our method 30

times under the same initial conditions. The results ob-

tained with ICPA have also been shown for comparison.

As expected, we find that our method is in average more

accurate and more stable than ICPA in estimating the

correct transformation. Note that, in addition to small

errors, the variance of errors obtained with our method

was also small, which proves the robustness and reliabil-

ity of our proposed approach against noise in illumina-

tion. Moreover, for exact estimates of illumination, our

proposed method achieves registration that is as accurate

as that with ICPA.

Figure 7 plots quantitative results of registration ob-

tained with our proposed method under various noise in

intensities and normals where the ground truth illumina-

tion was used. We applied Gaussian noise with a variance

of several percent to the average of the image intensities

to generate noise in the intensity, and randomly perturbed

each normal vectors using a uniform distribution to gener-

ate noise in normals. For each different noise in intensity

and normals, we applied our method 30 times under the

same initial conditions. We observe that even with noise

in intensity with a variance of 9.5%, and noise in normals

of angle 10 degrees the largest errors are under the res-

olution of the range sensor. We find that our method is

stable against both geometric and photometric noise from

these results. Note that in these experiments, the stan-

dard ICP using both geometry and chromaticity did not

work.

2.2.2 Evaluation with real data

We conducted experiments using real objects to test

the effectiveness of the proposed method. In addi-

tion to ICPA, we also compared the proposed method

with ICP using both chromaticity and geometric fea-

tures (which we call ICP-CG) and SURF [3]. Note

that we used the source code for SURF provided at

http://www.vision.ee.ethz.ch/∼surf/ without modifica-

tions.
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図 6: Results for various different illuminations. (red: our

method, blue: ICPA)

(a) (b)

図 7: Results for various noise in (a) intensities and (b)

normals with our method.

We employed a Konica Minolta Vivid 910 range scan-

ner, which captures the 3D shapes and textures of objects.

Because the position and orientation of the range scanner

are unknown, it is difficult to obtain the ground truth from

the experimental setup. Accordingly, we manually com-

puted the ground truth transformation for all data to eval-

uate the registration results. That is, we chose about 10

corresponding points in two range images and computed

the transformation that minimized the distance between

all corresponding points. We employed the ground truth

obtained in this way to evaluate errors using equation (7).

Figure 8 shows the three sets of range images that we

used in these experiments. The quantitative results for

these experiments are listed in Table 1. As we can see,

our proposed method was the only one to always achieve

accurate registration of the two input range images.

In this section, we assumed the Lambertian reflectance.

However, real objects do present both Lambertian and

specular reflection components. When the specular com-

ponent has few impact on the object’s appearance, using

the Lambertian model is justified. However, when the

specular component plays a significant role in the object’s

appearance, the estimated albedo using the Lambertian

model becomes unreliable for matching points across pairs

of range images. In particular, the specular highlights

(which are not a surface intrinsic attribute) are propa-

gated into the albedo estimate. In the next section, we

(a) First image. (b) Second image. (c) Superimposed.

(d) First image. (e) Second image. (f) Superimposed.

(g) First image. (h) Second image. (i) Superimposed.

図 8: Initial state for data hand (top), box (middle), and

candy (bottom).

表 1: Quantitative evaluation of registrations, using data

hand, box, and candy.

hand

Our method ICPA ICP-CG SURF

Error 0.82 1.14 1.20 16.02

box

Our method ICPA ICP-CG SURF

Error 1.27 9.13 6.56 2.96

candy

Our method ICPA ICP-CG SURF

Error 0.81 5.14 4.03 23.25

will investigate how to recover albedo from two specular

range images illuminated by a few unknown point light

sources.

3. Estimating Albedo of Specular Ob-
jects

In the method we proposed in the section 2, as well as in

previous work that makes use of albedo ([8]), the specular

reflections at the surface of an object are not considered.

In this section, we propose a method for extracting albedo

from two range images of a specular object under a few
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fixed and unknown point light sources. For each range

image, we generate candidates of light source directions,

using normals at the surface and local peak of intensity.

Illumination consistency on two range images allows us to

identify light source directions among the candidates. The

detected light source directions then enable us to define

regions where the reflection components are accurately

separated. We compute albedo in these regions and ex-

trapolate it by using neighboring similarities. In this way,

we obtain albedo over the range images. The estimated

albedo is used as an input of our previously proposed reg-

istration algorithm to show the usefulness of the proposed

method. Fig. 9 illustrates the flowchart of our proposed

method. Our intensive experiments show the effectiveness

of the proposed method. We note that a part of this work

appeared in [30], [31], [32].

3.1 Local computation of albedo

When an object is illuminated by a single distant light

source and we are given the corresponding illumination

chromaticity, a method exists that separates the reflec-

tion components of the textured surface [28]. However,

in our case, the illumination environment is not restricted

to a single light source and, thus, such a separation tech-

nique cannot be applied to the whole surface. Neverthe-

less, even in the case of multiple light sources, there exist

some regions where the incident illumination can be ap-

proximated by a single light source. We thus divide the

whole image into regions so that we have a region that is

approximated by a single light source illumination. We

call such regions non-ambiguous. We can then separate

the reflection components of non-ambiguous regions to lo-

cally compute albedo. We note that a region is called

ambiguous if the region is illuminated by multiple light

sources.

3.1.1 Detection of specular highlights

If we consider a region with homogeneous texture, then

a specular highlight will exhibit a local peak of inten-

sity. This is because the specular reflection component

increases as the viewing direction comes closer to the

mirror-like reflection direction. We thus first identify pos-

sibles specular highlights as the local peaks of intensities

at the surface. However, some of the detected highlights

may just be high intensity texture regions, which would

cause inaccurate estimation of incident illumination direc-

tions. We employ illumination consistency (i.e. the fact

that the light source directions producing corresponding

specular highlights are the same in two range images) to

discriminate between specular highlights and high inten-

sity texture regions.

Normals at the surface are available for two range im-

ages. We can thus estimate the incident illumination di-

rection that can produce such highlight by back-tracing

the viewing direction to the center of the specular high-

図 10: Illumination consistency constraint.

light region in the mirror-like reflection direction.

The highlight regions are then clustered into groups

that are produced by similar light sources (i.e. light

sources with similar incident direction) and the high in-

tensity texture regions are identified and eliminated using

the illumination consistency constraint. Assume a region

as a specular highlight in a range image and consider its

corresponding light source direction. If no specular high-

lights can be found in the other range image with its sim-

ilar corresponding light source direction, then the same

light source does not illuminate the object in the other

range image, which contradicts to the assumption of fixed

illumination.

Fig. 10 illustrates the illumination consistency con-

straint under a fixed viewpoint and fixed illumination

condition. We notice that we focus on situations when

each light source illuminating the object produces specu-

lar highlights at the surface and when the object presents

symmetries in its shape. As a consequence, the geometry

of the surface viewed in different pose may be exactly the

same, while its texture changes. That is what is illustrated

in Fig.10. The color part highlighted in red corresponds

to the texture of the object and thus moves accordingly

to the object pose. By contrast, the color highlighted in

green represents a specular highlight and moves according

to the relationship between the object shape and the light

source. In this example, both the geometry and illumina-

tion does not change in the two different poses. That is

why the specular highlight (highlighted in green) remains

fixed.

We finally obtain consistent specular highlights on two

range images with their estimated incident light direction.

These specular highlights are then used to compute the

illumination chromaticity of each light source. The es-

timated light sources directions are used to detect non-

ambiguous regions each of which is mostly illuminated by

a single dominant light source. Details of these procedures

are given in the next sections.

3.1.2 Detection of non-ambiguous regions

For each specular highlight, we have estimated its

mostly dominant light source direction. If the incident
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Range Image 1 

Range Image 2 

Specular highlights 
detection 

Non-ambiguous 
region detection 

Albedo 
computation 

Albedo 
extrapolation 

Albedo Image 1 

Albedo Image 2 

Local computation of albedo 

図 9: Basic flow of the proposed method.

図 11: Definition of non-ambiguous regions.

illumination of a region is a single distant light source, we

can use the method [28]. We can not, however, directly

apply the method [28] to the whole surface, because the il-

lumination environment can be composed of multiple light

sources. In fact, the method [28] requires a normalized

image that simulates pure white illumination. However,

we cannot obtain a normalized image if the scene is illu-

minated by unknown multiple light sources with different

colors. This is because the normalization process is not

additive, not even linear.

Since each detected light source is distant from the sur-

face, the incident light rays coming from one light source

is the same for all points at the surface. By using the

detected incident light directions, we compute a shadow

map for each detected light source. Namely, for a light

L with its directional vector l = (lx, ly, lz), we define the

shadow map S induced by L proportional to the energy

received from L by each point at the surface. More pre-

cisely, for a point x on the surface with normal n and with

angle Θ between l and n, we define

S(x, L) = cosΘ.

We consider a set of light sources {Li}i∈[1:n]. To detect

non-ambiguous regions, we use the criterion below:

x is in a non-ambiguous region if and only if

∃i ∈ [1 : n], s.t ∀j ∈ [1 : n], j 	= i, S(x,Li) ≥
S(x,Lj) and

S(x,Li)−S(x,Lj)
S(x,Lj)

≥ β, with β = 1 for example.

For each non-ambiguous region, we attach the light

source that emits the most energy inside this region and

regroup regions with the same corresponding light sources.

As a consequence, we obtain non-ambiguous regions in

図 12: Albedo extrapolation.

two range images in which we can reliably and adaptively

separate reflection components using a single distant light

source, as proposed in [28]. Fig. 11 illustrates the de-

tection of non-ambiguous regions at the surface in the

presence of two point light sources.

3.2 Extrapolating albedo into ambiguous regions

Up to here, we have computed albedo in non-ambiguous

regions. However, in ambiguous regions, albedo is still un-

known and matching points in these regions is not yet pos-

sible. We remark that albedo has been computed in sev-

eral parts in the surface and we expect that several points

in the ambiguous regions have albedo similar to points in

non-ambiguous regions. We thus estimate albedo in the

ambiguous region by extrapolating albedo computed in

non-ambiguous regions.

We consider a small region at the surface without spec-

ular highlights. The energy reflected at points inside this

region is then mostly diffuse. As a consequence, the chro-

maticity of points inside this region with the same surface

color is similar to each other. Therefore, by comparing

chromaticity of points inside the regions, we can identify

points having similar albedo. Fig. 12 illustrates different

stages of the extrapolation procedure.

As a result, we extrapolate albedo to the rest of points

on the surface that are not inside a specular highlight.

We then obtain albedo over the surface. The estimated

albedo thus becomes useful for registering range images.

3.3 Experiments

In order to show the usefulness of our method, we use
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(a) (b)

(c) (d)

図 13: The input synthetic data and estimated albedo

images. (a) input image 1 and (b) its estimated albedo

image. (c) input image 2 and (d) its estimated albedo

image.

our estimated albedo images as an input of the range im-

age registration method we proposed in Section 2.

Figure 13 shows results obtained with the synthetic

range images presented in Fig. 5 on which specular re-

flection is simulated. In this example, we obtained and

error*1 of 0.2 times the resolution of the image after reg-

istration. We also observe that as expected, the specular

effects are correctly removed and that the features are

globally invariant to the viewpoint, the pose of the object

and the illumination. Moreover, the obtained albedo is

consistent for the two range images, which allowed us to

obtain registration accuracy of the same precision of the

acquisition device accuracy.

We also conducted experiments using real data. We

evaluated our method by comparing with registration re-

sults obtained using the albedo image computed with the

diffuse reflectance method. We also compared with regis-

tration results obtained using chromaticity.

We obtained to range images of a sphere with spec-

ular reflection components under fixed and uncontrolled

illumination (Fig. 14). Fig. 14 shows estimated albedo

images and the quantitative results of the registration by

the three methods are shown in Table 2.

As we can see in Table 2, using chromaticity to establish

matches between two range images of a specular object

with different poses does not work. Indeed, the specular

highlights are not removed, which tends to degrade the

*1 We used equation 7 to compute the error.

(a) (b)

(c) (d)

図 14: The data globe. Input image 1 (a) and 2 (b).

Albedo of image 1 (c) and 2 (d). Points with unknown

albedo are displayed in vivid green.

表 2: Results obtained for the data globe.

Error Rotation Translation

Ground truth

0.00 (22.5, 0.02, 0.94, 0.33) (9.0, 0.1,−1.5)

Proposed method

0.54 (22.3, 0.03, 0.94, 0.33) (9.0, 0.2,−1.5)

Diffuse reflection model

0.90 (22.4, 0.02, 0.95, 0.32) (9.0, 0.2,−1.4)

Chromaticity

1.61 (22.1, 0.04, 0.92, 0.30) (8.9,−0.1,−1.5)

accuracy of matching. Similarly, the diffuse approxima-

tion performed worse than our proposed method. This is

because the specular reflections at the surface are ignored

in the diffuse reflection model. On the contrary, our pro-

posed method allowed us to obtain reliable albedo values

for matching points.

In this section as well as in Section 2, we assumed

the surrounding illumination to be composed of only a

few point light sources. Such kind of illumination is

rather limited since the surrounding illumination gener-

ally presents extended light sources. In the next section,

we will investigate the derivation of a photometric metric,

independent to illumination, which evaluates the quality

of a given rigid transformation aligning a pair of overlap-

ping range images.

4. Photometric metric under unknown
lighting

The mechanisms behind image formation are complex

and estimating albedo from a single range image under

unknown and general illumination is impossible. As a
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consequence, using photometric features to match points

across range images as proposed in the previous sections

has limited range of applications. However, matching

points across the range images is not the only way we can

take for registration. Other transformation search meth-

ods can be found in the literature where a cost function

is minimized over a parameter space. Some use optimiza-

tion strategy such as Gauss Newton ([6], [11], [14], [24]),

and some use the hypothesis-and-test strategy such as

RANSAC or brute-force search ([9]). The former is effi-

cient but sensitive to the initial alignment while the latter

does not depend on initialization even though it may be

less efficient.

Several geometric cost functions, as well as 2D textural

cost functions have already been explored. However, less

work has been done on defining a 3D photometric metric

for aligning pairs of range images, and as far as we know

no photometric metric under unknown lighting has been

reported.

In this section, we propose a novel photometric metric

for evaluating the correctness of a given transformation

and demonstrate its usefulness with a practical registra-

tion method. We consider the situation where the object

pose changes during acquisition, while the viewpoint and

illumination stay fixed. We assume a Lambertian reflec-

tion with no inter-reflections, nor any cast shadows. We

note that when the object’s pose changes while the illumi-

nation stays fixed, its appearance in both shape and color

changes.

We define our photometric metric using the spherical

harmonics representation of image formation, without us-

ing any a-priori information on the incident lighting. This

function evaluates the consistency of the relationship be-

tween geometry, texture and illumination. We then use

a hypothesis-and-test registration method to demonstrate

the usefulness of our proposed photometric metric. Our

method carries out registration not by estimating trans-

formations from point correspondences but by generating

transformations and evaluating them to find the best one.

Over the sphere, we generate rigid transformations and

evaluate them to reach the best one for the final result.

We note that a part of this work appeared in [34].

4.1 The photometric metric

We introduce our photometric metric under unknown

lighting that does not compare features but compute pho-

tometric re-projection error. By doing so, we simultane-

ously take into account geometry, reflectance properties

and illumination to derive a metric that makes full use

of photometry. Figure 15 illustrates the derivation of our

proposed metric.

4.1.1 Review of spherical harmonics representa-

tion

The spherical harmonics have been shown to be a pow-

図 15: Procedural evaluation of a given transformation.

erful tool to model image formation [25], and, for the Lam-

bertian reflectance, up to the second-order spherical har-

monic expansion is known to be sufficient to approximate

the image formation with more than 98% accuracy [2].

We briefly recall the principles of the spherical harmonics

representation and refer to [2] for more details.

We consider a convex, Lambertian object illuminated

by distant isotropic lights. The intensity of the reflected

light is known to be a function of the normal and albedo.

Namely, according to the Lambert’s law and for an inci-

dent light ray �l of intensity l, the intensity of the reflected

ray at a point x, is lmax(cos(θ), 0), where θ is the angle

between the incident light ray and the normal at the sur-

face at point x. Then, the irradiance E(x) at a point x for

a distant global illumination L and the diffuse reflection

kernel*2 R is given by an integral over the sphere.

E(x) =

∫ 2π

0

∫ π

0

L(θ, φ)R(Gx(θ, φ))sin(θ)dθdφ, (8)

where (θ, φ) are the incident angles in the global coordi-

nate system and Gx is the transformation from the global

coordinate system to the local coordinate system centered

around the normal of the point x.

The irradiance at a point x is then scaled by the albedo

ρ(x) to have the color of the point: I(x) = ρ(x)E(x). We

remark that the irradiance can be viewed as the convolu-

tion over the sphere of the incident illumination L and the

reflection kernel R. Equivalently to the Fourier series for

the circle, the spherical harmonics are a convenient tool

to examine the convolution over the sphere. They allow a

compact representation of the image formation. Namely,

the color I(x) of a point x on the Lambertian surface is

approximated as

I(x) ≈ ρ(x)
2∑

l=0

l∑
m=−l

Ll,mRl,m(x), (9)

where Ll,m and Rl,m(x) represent the spherical harmonic

*2 R(θ) = max(cos(θ), 0).
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coefficients of L and R ◦ Gx, respectively ( ◦ stands for

the function composition operator). We notice that the

spherical harmonic coefficients Rl,m(x) of the Lambertian

reflection kernel R ◦ Gx are known as functions of the

normal at point x [2].

4.1.2 Evaluation metric for a transformation

We use the spherical harmonics representation of image

formation to derive our photometric evaluation metric for

a given rigid transformation. We remark that our photo-

metric metric does not suffer from scale ambiguity that

arises when estimating photometric features, neither re-

quires any a-priori information on the incident illumina-

tion.

A given transformation between two range images

(range images 1 and 2) induces point correspondences

across the two images. We use the spherical harmonics

representation of image formation to derive a linear sys-

tem from the point correspondences with the illumination

as unknown. The estimated illumination then allows us

to compute albedo values at points of the range images,

which are transferred to their corresponding points. The

transferred albedo values are used together with the esti-

mated illumination and geometry to synthesize colors of

the two range images. The synthesized colors are then

compared with the captured colors of the two range im-

ages to evaluate the photometric consistency (i.e. pho-

tometric re-projection error) of the alignment induced by

the given rigid transformation.

Let T denote a given transformation and

(xi,Γ(T (xi)))i∈[0,n−1] and (Γ(T−1(yi)),yi)i∈[0,m−1]

denote the induced point correspondences, where

xi ∈ R3 belongs to range image 1 (denoted as I1),

yi ∈ R3 belongs to range image 2 (denoted as I2) and Γ

denotes the point correspondences identification operator

(see Section 4.1.3). If T accurately aligns the two range

images, then two corresponding points represent the

same point of the surface viewed in different poses, and

their albedo is the same ρ(xi) = ρ(Γ(T (xi))) (similarly

ρ(yi) = ρ(Γ(T−1(yi)))).

R is known and depends on only the surface nor-

mals. Therefore, using (9), we can derive a linear

system LM = 0 with L as unknown, where L =

[L0,0, L1.−1, L1,0, L1,1, L2.−2, L2,−1, L2,0, L2,1, L2,2] is a

row vector in 9D andM = [Mi]i∈[0,n+m−1] is a 9×(n+m)

matrix, where n and m are the number of corresponding

points from range images 1 and 2 respectively, and

Mi = [I1(xi)R0,0(Γ(T (xi)))− I2(Γ(T (xi)))R0,0(xi), · · · ,
I1(xi)R2,2(Γ(T (xi))) − I2(Γ(T (xi)))R2,2(xi)]

�

if i < n, Mi = [I2(yi)R0,0(Γ(T
−1(yi))) −

I1(Γ(T−1(yi)))R0,0(yi), · · · , I2(yi)R2,2(Γ(T
−1(yi))) −

I1(Γ(T−1(yi)))R2,2(yi)]
� if n ≤ i < n+m.

The matrix M is known, and we can estimate the illu-

mination L̃(T ) with respect to the given transformation T

using the SVD, up to an unknown scaling factor λ (λ 	= 0).

We can then estimate albedo of each point.

ρ(x) =
1

λ

(
I(x)∑2

l=0

∑l
m=−l L̃l,m(T )Rl,m(x)

)
. (10)

We need to carefully choose an attribute for our eval-

uation. For example, comparing the estimated albedo of

corresponding points is not effective. This is because the

photometric solution for a given transformation has scale

ambiguity, and regardless of the relationship between ge-

ometry, illumination, and albedo, a solution with a small

scaled albedo always gives better results. Namely, the re-

projection error ‖L̃(T )M‖ or the residual error in albedo

‖ρ(xi)−ρ(Γ(T (xi)))‖ is different for L̃ and λL̃, with λ 	= 1

while L̃ and λL̃ correspond to the equivalent photometric

solution. We thus use the captured color images as the

ground truth to evaluate the transformation T . This is

justified by the fact that the estimated photometric prop-

erties should be coherent with the correspondences and

the captured images if T is accurate.

Corresponding points (xi,Γ(T (xi))) should have the

same albedo if T is accurate. We thus synthesize the color

of xi in range image 1 as follows:

Ĩ1T (xi) = ρ(Γ(T (xi)))

2∑
l=0

l∑
m=−l

L̃l,m(T )Rl,m(xi). (11)

Similarly, we synthesize the colors Ĩ2T (yi) of points yi in

range image 2.

We now define our photometric re-projection error of T .

Eval(T ) =
∑n−1

i=0 ‖I1(xi)−Ĩ1
T (xi)‖+

∑m−1
i=0 ‖I2(xi)−Ĩ2

T (xi)‖
n+m .

(12)

We remark that the unknown scaling factor λ that arises

when estimating albedo in (10) is no longer present in

(12).

We notice that the shape of Eval depends on T .

Namely, Ĩ1T and Ĩ2T change even for the same point de-

pending on T . Thus, the derivation of Eval is procedural

and we do not have an analytical formula for the function.

In addition, Ĩ1T and Ĩ2T are only piece-wise continuous with

sufficiently similar transformations. This is because the

distribution of albedo over the surface is only piece-wise

continuous. As a consequence, the values of the entries

of the matrix M in the linear system defined above vary

piece-wise continuously with sufficiently similar transfor-

mations and so does the estimated photometric properties

as well as the synthesized images.

4.1.3 Point correspondences identification

Though it is a simple task, identifying the point corre-

spondences from the given transformation T is the most

time consuming one for our evaluation metric. It is thus

of major importance to perform it as fast as possible. We

use projective data association [27] to realize fast point

correspondences estimation.

For two range images I1 and I2, their corresponding

depth maps D1 and D2 with the associated intrinsic ma-

trix K, and the given transformation T aligning I1 to I2,
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the corresponding point Γ(x) ∈ I2 of a point x ∈ I1 is

identified as follows: (1) x is transformed into the camera

coordinate system of I2 (y = Tx); (2) the point y is per-

spective projected into image coordinates ((i, j, 1) = Ky);

(3) Γ(x), the closest point in I2 of x, is then identified as

the point associated to the pixel (i, j) in D2. Searching

for the closest points from I2 to I1 is carried out similarly.

4.1.4 Stable points identification

Points in the overlapping area do not always corre-

spond exactly. This is due to different digitization of

the overlapping area depending on the object pose. As

a consequence, even for the best transformation aligning

the range images, there may be some point correspon-

dences (x,Γ(T (x))) that do not satisfy the statement

ρ(x) = ρ(Γ(T (x))). This is because the distribution of

albedo at an object’s surface is not continuous. In such a

case, the quality of the estimated photometric properties

(illumination and albedo) may be significantly degraded,

which would reduce the reliability of our photometric met-

ric. To overcome this problem, we first identify a stable

point, i.e., a point whose albedo and normal values are suf-

ficiently similar to those of its corresponding point even

though the correspondence may not be exact. We then

use only stable points to evaluate our photometric func-

tion. We extract stable points independently from two

range images as a pre-processing step.

It is well known that in a small vicinity and for dif-

fuse reflection, the difference in chromaticity approxi-

mates well the difference in albedo. Accordingly, we define

a stable point using both difference of chromaticity and

difference of normals in a small vicinity. Namely, a point

x is identified to be stable if

∀y such that ‖y − x‖ < εs,

‖c(x)− c(y)‖ < εc and ‖n(x)− n(y)‖ < εn,
(13)

where y is a point in the range image concerned, c is chro-

maticity, n represents the surface normals, and εs, εc, and

εn are three thresholds.

4.1.5 Analysis of the photometric metric

We analyze the behavior of our photometric metric un-

der various parameters. Starting from the ground truth

transformation that perfectly aligns two range images we

generate several transformations by randomly perturbing

the parameters of the ground truth transformation and

plot the photometric re-projection error as the function

of the registration error (equation (14)) for each gener-

ated transformation. The random perturbation was ob-

tained by perturbing the rotation angles inside the range

[−0.3; 0.3] radians and the translation values inside the

range [−0.7; 0.7] mm.

Figure 17 illustrates our photometric metric with re-

spect to the different illumination conditions illustrated

in Figure 16. For all situations the stable points were

identified using the parameters εs = 0.03, εc = 0.01, and

Range image 1 Range image 2 

(a) Situation 1

Range image 1 Range image 2 

(b) Situation 2

Range image 1 Range image 2 

(c) Situation 3

Range image 1 Range image 2 

(d) Situation 4

図 16: The four different illumination conditions.

(a) Situation 1 (b) Situation 2

(c) Situation 3 (d) Situation 4

図 17: Photometric re-projection error in function of the

registration error for the different situations.

εn = 0.2. From these different plots, we can see that (1)

a transformation with a small photometric re-projection

error is close to the ground truth transformation aligning

the range images, (2) the minimal solution is almost in-

sensitive to changes in illumination and (3) our proposed

photometric metric will be difficult to minimize using tra-

ditional optimization methods.

4.2 Registration

Given two overlapping range images, we seek a

rigid transformation that minimizes the photometric re-

projection error (12). When minimizing the photomet-

ric re-projection error, we have to decide the strategy we

use. As we discussed in Section 4.1.5, our proposed pho-

tometric metric is hard to minimize using traditional opti-

mization methods. Therefore, we choose the hypothesis-

and-test search. Fig. 18 illustrates the flowchart of our

proposed registration method.
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図 18: Flowchart of transformation search.

4.2.1 Transformation search

The hypothesis-and-test search is performed by testing

the quality of the registration for a set of rigid transfor-

mation candidates. The search ends when a rigid trans-

formation accomplishing accurate registration is found or

when all candidates are tested (the rigid transformation

minimizing the cost function is then selected).

The most famous hypothesis-and-test search is the

RANSAC method where candidates are generated from

random triplets of correspondences. Straightforwardly

using RANSAC is computationally unrealistic. This is

because we have potentially around 1012 possibilities for

range images with 104 points. Therefore, how to efficiently

search the best rigid transformation aligning range images

becomes a critical issue.

On one hand, rigid transformations aligning two range

images can be equivalently represented by sets of rigid

point correspondences induced by the transformations.

Therefore, if we represent the range image in another do-

main while keeping the rigidity of point correspondences,

we can discuss the problem of searching the best transfor-

mation aligning the range images in this new domain.

On the other hand, the unit sphere is a convenient rep-

resentation of a close-zero genus 3D surface. For closed

surfaces, the spherical representation is pose invariant

[39]. Therefore, the local structure in the spherical do-

main does not change and the rigidity of point corre-

spondences is kept. In addition, the rigid transformations

aligning two spheres belong to SO(3). We thus employ

the spherical representation for range images. This rep-

resentation reduces the transformation parameter space

from SO(3)×R3 to SO(3).

The spherical representation of range images is, unfor-

tunately, not pose invariant because surfaces in a range

image are not closed. As a consequence, the local struc-

ture in the spherical domain may change in the original

domain. This means that the rigidity of point correspon-

dences in the spherical domain may not be kept in the

original domain. To tackle this problem, we introduce re-

finement of the spherical representations throughout the

registration process to reduce changes of the local struc-

ture in the spherical domain as much as possible. Due

to the possibility of violating rigidity of point correspon-

dences in the original domain, we also have to generate

the rigid transformations in the original domain from the

point correspondences obtained in the spherical domain

using the method proposed by Horn [12] as follows. A 3D

rotation in SO(3) gives us point correspondences in the

spherical domain. In the original domain, we use the same

point correspondences as the input of [12] to obtain the

corresponding rigid transformation in SO(3)×R3.

We remark that though we can use RANSAC method to

generate transformation candidates from SO(3) we prefer

to use an exhaustive search to ensure convergence to the

optimal solution. To reduce the computational time, we

reduce [0 : 360]3 to [0 : 20
step ]

3, where step increases during

the iteration. In the experiments, we set step = 1 at the

first iteration and then step = stepi for the iteration i.

4.2.2 Spherical representation and refinement

Our spherical representation method is inspired by the

method proposed in [39] for closed surfaces. The input is

an unorganized point set represented in the global coordi-

nate system, and the output is a structured mesh with cor-

responding coordinates on the unit sphere that preserves

the local structure. We note that the spherical represen-

tation of each range image is computed independently.

4.2.2.1 Spherical representation.

We first orthogonally project all the 3D points of a range

image along the z axis (viewing direction) to a plane. We

then compute the convex hull of the projected points and

identify the vertices of the convex hull. The vertices are

used to generate Delaunay triangulations. The set of 3D

points in the range image corresponding to the vertices

of the convex hull is then projected to the unit sphere by

normalizing the coordinates of each point. Next, we select

a point (in the range image) that is not included in the

vertices of the convex hull and carry out the following pro-

cess: we progressively construct triangulations by adding

the point and compute the local position of the point with

respect to the new triangulation. The local position is

computed in the flattened vicinity of the point, obtained

using conformal mapping [17], to accurately represent the

local structure. The point is then positioned on the sphere

using this local position. This series of processes is carried

out until all the points in the range image are involved.

4.2.2.2 Spherical representation refinement.

We consider two range images: range image 1 and range

image 2. Without loss of generality, we consider the prob-

lem of aligning range image 1 to range image 2. After each

iteration, we refine the spherical representation of range

image 1 with respect to range image 2.
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The overlapping areas between the two range images

from the current best transformation are first identified.

The bijection B between points of the two overlapping

areas is then computed. Namely, for a point x in the

overlapping area O1 of range image 1, B(x) = closest(x)

if x = closest(closest(x)), B(x) is undefined otherwise.

Here, closest stands for the closest point (in the sense

of the Euclidean distance) in the overlapping area of the

other range image. Then, for each point of O1, its coor-

dinates on the sphere are set to those of its closest point.

The remaining points of O1 that do not have an image for

B are placed on the sphere using the local positions as we

did in the spherical representation above.

We notice that we identify the closest points in the

spherical domain in the same way as explained in section

4.1.3.

4.3 Experiments

To demonstrate the usefulness of our proposed method,

we evaluate our algorithm in several challenging situa-

tions using synthetic and real data. For the compari-

son, we used three methods: the proposed method using

chromaticity instead of our evaluation function (Method

1); the method proposed in Section 2 using albedo with

a given directional light source (Method 2), and the

method proposed in Section 2 using chromaticity instead

of albedo (Method 3). Whereas comparing our method

with Method 1 shows the advantage of using photometry,

comparing it with Methods 2 and 3 shows the advantage

of our search strategy. We also compared our method

with the alignment obtained by matching using SIFT (we

used the available code provided by Andrea Vedaldi [35]).

We notice that all data are devoid of salient geometric fea-

tures, and thus, using geometric feature-based registration

methods does not work in these cases.

We consider the problem of aligning range image 1 to

range image 2 and we assume we are given the ground

truth (obtained manually for real data). We evaluate

the registration result using the distance between the es-

timated position of points of range image 1 after regis-

tration and their ground truth position. Namely, given

Tg and Te the ground truth transformation and the esti-

mated transformation respectively, the registration error

err(Te) is computed as follows:

err(Te) =

∑n
i=1 ‖Tg(xi)− Te(xi)‖2

n
, (14)

where n is the number of points in range image 1 and

{xi}i∈[1;n] are the points of range image 1.

εs, εc, and εn were set to 3 ∗ res, 0.02, and 0.1 respec-

tively for all experiments with synthetic data and to 2∗res,
0.05, and 0.2 for all experiments with real data.

4.3.1 Synthetic data

We used the synthetic data presented in Figure 5 where

the exact albedo is known and we simulated lighting un-

図 19: Input data.

図 20: Results obtained with the five methods.

der Lambertian reflection. This data set is challenging

for registration in that the shape is rotationally symmet-

ric, the texture of the objects presents several repetitive

patterns, and no exact correspondences exist between the

two range images.

The set-up is illustrated in Figure 19. The illumination

was composed of three directional light sources of differ-

ent intensities as well as an ambient light source. The im-

ages were rendered using the standard Lambertian model.

Figure 20 shows the results obtained with the five meth-

ods. In this situation, the illumination induces significant

changes in the object appearance (e.g. the color of sev-

eral points changed from reddish to white), and the use

of chromaticity is no longer effective for both our search

strategy and ICP-like methods. Method 2 failed in align-

ing the range images because it assumes that the object is

illuminated by only a single light source. Results obtained

using SIFT key-point detector and descriptor for estimat-

ing point correspondences are also illustrated in figure 20.

Due to the projective deformations, changes in intensity

and repetitive patterns, the SIFT-based method did not

work in our situation. Our method is the only one that

achieved accurate alignment.

4.3.2 Real data

We employed a Konica Minolta Vivid 910 range scan-

ner, which captures the 3D shape and the texture of an

object. The ground truth transformation was obtained

manually.

Figure 22 shows the results obtained with the different

objects called Base, Cylinder 1 and Cylinder 2 (shown in

figure 21). Figures 22 (b) and (c) show the result obtained

with the data Cylinder for the same changes in pose but
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Range image 1 Range image 2 Superimposed 

(a) Data Base. (b) Lighting.

(c) Data Cylinder 1. (d) Lighting.

(e) Data Cylinder 2. (f) Lighting.

図 21: Initial state for data Base, Cylinder 1 and Cylinder

2.

under different illumination conditions.

The data Base is challenging in that its shape is rota-

tionally symmetric while its texture does not exhibit clear

key-points with distinctive features that could be used for

matching. Because in Method 2 and Method 3 we do not

use key-point detector, the number of outliers in matching

becomes larger than that of inliers. This results in failed

registration. The SIFT approach uses key-point detector

and key-point descriptor identified in the intensity images

for matching. In the intensity images, however, the tex-

ture patterns are not distinctive enough, which leads to

some mismatches and results in failed registration. On

the other hand, our proposed method uses a global error

metric and a hypothesis-and-test search, which allowed us

to successfully register the two range images. We notice

that using chromaticity in this case did not work. This is

because the difference of chromaticity between points of

the two range images is not discriminative enough to find

the best transformation.

The data Cylinder 1 and Cylinder 2 are challenging

in that there are several missing points and large noise

in the depth values. This is because the accuracy of the

laser scanner decreases when the texture at the surface

becomes black (the laser beam is then not properly re-

flected), which is the case for all letters. This effect has

dramatic impact on the Methods 2 and 3 because the miss-

ing points may prevent the region from growing in one

range image while it will continue growing in the other

range image. In addition, the noise in the depth values

amplify the distortion between the descriptors of the same

point in the two range images. This results in failed reg-

Proposed  
method 

Method 1 Method 2 Method 3 SIFT 

Method used Proposed method Method 1 Method 2 Method 3 SIFT 

Error (in mm) 0.823 19.7 27.4 27.7 34.95 

(a) Data Base.

(b) Data Cylinder 1.

(c) Data Cylinder 2.

図 22: Registration results for data Base, Cylinder 1 and

Cylinder 2.

istration. The SIFT method did not work in this case

either. This can be due to the repetitive patterns of the

letters and deformations caused by perspective projection.

On the other hand, our proposed method could obtain ac-

curate registration results for all situations.

5. Conclusion

In this paper we addressed the use of photometry for ac-

curately registering pairs of range images devoid of salient

geometric features. First, we designed, implemented and

evaluated a robust local descriptor that overcomes the

drawbacks of current methods using albedo for Lamber-

tian objects under simple illumination. Second, we pro-

posed an albedo estimation strategy for the case of spec-

ular objects illuminated by a few unknown point light

sources that enlarges the range of applications of our pre-

viously proposed registration method. Third, we proposed

a photometric metric for registering Lambertian range im-

ages under unknown general illumination and proved its

usefulness through a practical registration method.

In this work, we made significant advances in using pho-

tometry for registering pairs of overlapping range images.

In a broad sense, we could enlarge the practicability and
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range of applications of range image registration.
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