
Compact and Accurate 3-D Face Modeling Using an RGB-D Camera: Let’s
Open the Door to 3-D Video Conference

Pavan Kumar Anasosalu †,‡
†University of Southern California

California, USA
anasosal@usc.edu

Diego Thomas‡ and Akihiro Sugimoto‡
‡National Institute of Informatics

Chiyoda, Tokyo, Japan
{diego thomas, sugimoto}@nii.ac.jp

Abstract

We present a method for producing an accurate and com-
pact 3-D face model in real time using a low cost RGB-D
sensor like the Kinect camera. We extend and use Bump Im-
ages for highly accurate and low memory consumption 3-D
reconstruction of the human face. Bump Images are gen-
erated by representing the Cartesian coordinates of points
on the face in the spherical coordinate system whose origin
is the center of the head. After initialization, the Bump Im-
ages are updated in real time with every RGB-D frame with
respect to the current viewing direction and head pose that
are estimated using the frame-to-global-model registration
strategy. While high accuracy of the representation allows
to recover fine details, low memory use opens new possible
applications of consumer depth cameras such as 3-D video
conferencing. We validate our approach by quantitatively
comparing our result with the result obtained by a commer-
cial high resolution laser scanner. We also discuss the po-
tential of our proposed method for a 3-D video conferencing
application with existing internet speeds.

1. Introduction

Automatic reconstruction of 3-D models of the human

face has a long history ([7], [9], [16]) yet is still a chal-

lenging topic in computer vision. In particular, most of the

research dwells in generating precise models but few ad-

dress the need for compactness of the generated 3-D mod-

els. Recently, a significant effort has been made to develop

inexpensive consumer depth cameras that allow to acquire

depth images at a video rate, e.g. Microsoft Kinect camera

or Asus Xtion Pro camera. The video-rate depth cameras

are now becoming a commodity tool for depth measure-

ments with reasonable accuracy. Such sensors allow live 3-

D face modeling, which opens new possibilities for interac-

tive applications such as 3-D video conference. To achieve

real-time remote interaction between users, a bottleneck is

how to generate a compact live 3-D model with maintain-

ing as much quality as possible. In comparison to some

of the state-of-the-art algorithms that employ point clouds

[4], Surfels [12] or volumes [6], the Bump Image [5, 15]

representation consumes the least amount of memory and

at the same time maintains accuracy and color information.

Thanks to this compactness of Bump Images and also the

availability of color information by RGB-D cameras, appli-

cations like 3-D video conferencing become tangible, where

the local geometry of the head and the color information can

be streamed live.

For automatic 3-D face modeling, some methods (e.g.

[16]) use a predefined template mesh and perform a non-

rigid alignment of the template mesh to the depth image

obtained by a depth sensor. Usually such systems are time

consuming and cannot be used for real-time applications.

Moreover, using a predefined template brings some bias to-

wards the template. Other popular methods like Kinect Fu-

sion [6] require a large amount of memory and the output

often needs to be post-processed before being used by other

applications.

Our goal is to develop a method that enables live

high-quality 3-D face model reconstruction from a con-

sumer RGB-D camera while maintaining low memory use.

Our proposed method opens new possibilities such as live

streaming of the 3-D model during the reconstruction pro-

cess, which cannot be avoid in 3-D video conferencing for

example.

In this paper, we use spherical maps to represent the 3-D

face model; they can also be termed as Bump Images. As

shown in [15], some advantages of this representation are

compactness and easiness of meshing and texturing. Since

the head is roughly spherical in shape, we can represent

points of the face more efficiently in spherical coordinates

rather than Cartesian coordinates. Thus the whole head can

be represented in a 6-channel 360x180 map where the first

3-channels represent the spherical coordinates and the last

3-channels represent the color information. This also sim-

plifies the task of searching for adjacent points, thus mesh-

2013 IEEE International Conference on Computer Vision Workshops

978-0-7695-5161-6/13 $31.00 © 2013 IEEE

DOI 10.1109/ICCVW.2013.16

67

Figure 1: Overview of processing pipeline

ing the point cloud becomes easy when the model is repre-

sented by Bump Images. Since meshing is an integral part

of our algorithm, this representation boosts the performance

of our system. The formation of Bump Images is explained

in Section 3.1.

The depth measurements corresponding to the head

(which is segmented out from the rest of the depth image

in a pre-processing step) are integrated to the global model

in real time using the frame-to-global-model fusion frame-

work. Live measurements are first aligned to the global

model using the GPU implementation of the Generalized

Iterative Closest Point Algorithm (GICP) [14]. Then the

global model is updated using a weighted average filter and

with respect to the current viewing direction. By doing

so we achieve high quality 3-D face reconstruction. Our

global model is kept in memory using Bump Images, which

is compact and thus enables low memory consumption.

Though recent consumer depth sensors can deliver direct

depth sensing and standard RGB video stream of VGA for-

mat at 30 frames per second, the depth data is noisy and

the resolution is very low. Hence we use a view-centric ap-

proach based on OpenGL rendering pipeline [15] to align

the global model with incoming point cloud data. The

pipeline of our proposed method is illustrated in Figure 1.

2. Related Work

3-D face reconstruction methods can be classified into

two categories: data-driven methods and template fitting

methods. While methods that fall into the first category are

well adapted to real-time applications, methods falling into

the second one produce nicer results but are more time con-

suming and biased towards the input template.

Data-driven methods. Data-driven 3-D face modeling

methods (e.g. [5], [9]) generally build the 3-D face model by

integrating tracked live depth images into a common final

3-D model. Hernandez et al. [5] proposed to use the frame-

to-reference-frame framework for tracking the live depth

images. They also introduce the Bump Image framework,

where the 3-D facial surface is parameterized by cylindrical

coordinates (similar approach is used in [1]). Though high

quality face models could be obtained, the camera tracking

system is significantly affected by inaccurate pose estimates

when the current frame has a large pose variation against

the reference frame. Moreover, the proposed data integra-

tion method has its limitation as it is not view-centric and

thus do not account for the directional nature of the noise

in depth images. Also the cylindrical Bump Images record

only the geometry; there is no provision for recording tex-

ture information. Recently, Thomas et al. [15] proposed a

frame-to-global-model framework using Bump Images for

indoor scene reconstruction. Though the proposed method

can handle large pose variation in the image sequences, the

fixed 3-D scene is represented as a collection of planes,

which is not well adapted to reconstruct a moving 3-D face.

In [9], Newcombe et al. proposed Kinect Fusion where

the global model is a TSDF volumetric scene representa-

tion and the camera is tracked based on the frame-to-global-

model framework which is more robust against drift. For

reconstructing the scene, the method makes use of volu-

metric integration which is expensive in memory, unlike the

lightweight Bump Images. This poses limitation on dealing

with large amount of data, and this is critical in, for ex-

ample, teleconferencing applications or streaming applica-

tions. Though, the method proposed in [9] was developed

for a fixed scene, Izadi et al. [6] extended it by consider-

ing dynamic actions of the foreground. However we show

quantitatively that our method outperforms Kinect Fusion in

terms of both accuracy and compactness of the 3D models.

Template fitting methods. Methods for 3-D face model-

ing that fall into the template fitting category (e.g. [1], [2],

[16]) start from a generic model which is then deformed to

fit the input face. Most of shape fitting methods employ

a pre-defined morphable template mesh obtained by statis-

tical methods like the PCA, and they are usually parame-

terized by shape and texture parameters. In [1], Blantz et
al. described an iterative algorithm for fitting a morphable

template mesh to a textured depth scan. The method simu-

lates the process of image formation in 3-D space and esti-

mates 3-D shape and texture information from single im-

68

ages. The concept of cylindrical Bump Images is intro-

duced for computing dense point-to-point correspondences

for defining appropriate shape and texture parameters. The

energy function is minimized by both color and depth in-

formation to estimate the best fitting morphable model. The

method described in [16] employed a morphable model that

is fit to the depth images obtained from an RGB-D cam-

era. The template mesh and the incoming frame are aligned

using features detected in the RGB image as a coarse align-

ment step. The template is then aligned non-rigidly to the

incoming frame and the morphable model is fit to the tem-

plate. Unfortunately, this approach produces results that are

biased towards the template as seen in the results of [16].

Other methods like [3] make use of complex sensor ar-

rangements to estimate the parameters used to reconstruct

the shape. The binocular photometric stereo setup described

in [3] makes use of the binocular stereo to estimate the depth

by triangulation and the normals from shading variations by

using controlled LED lights. The shape reconstruction is

formulated as a Poisson equation constrained by the depth

image and the normal map previously estimated. The algo-

rithm completely relies on the data capture equipment and

the method is not benchmarked for speed. By contrast, our

proposed method aims to be independent of the depth sensor

used for data acquisition as we assume a noisy and incom-

plete (filled with holes) depth data as the input. Also for

better speed and real-time implementation we approximate

the surface normal rather than estimate them using shape

from shading cues by varying illumination as required by

methods described in [3] or [8]. This results in high quality

3-D face models obtained in real time.

3. Proposed method
Our proposed method takes a live sequence of RGB-D

images streamed from a fixed consumer RGB-D sensor with

unknown head pose. We assume that the relative movement

of the head between two successive frames is small and that

the facial expression do not change during reconstruction.

We start with an initial location and radius of the head ob-

tained using the SDK tracking system of the sensor. With

this setting, our method tracks the pose of the head in suc-

cessive frames using the frame-to-global-model framework

and fuses aligned data in a view-centric manner. We make

use of the 2-D grid organization of data in Bump Images

and capacities of OpenGL for fast and robust processing.

3.1. Bump Images for 3-D face modeling

Following [5], we employ canonical 2-D maps to repre-

sent the 3-D human face. The main advantage of using 2-

D canonical maps (also called Bump Images) compared to

other standard 3-D scene representations such as volumes,

cloud of points or Surfels is that it requires the less amount

of memory with guaranteeing similar accuracy. We employ

an extension of the Bump Image representation to improve

accuracy of the obtained 3-D models. Namely, (1) we pro-

pose to use spherical coordinates instead of cylindrical co-

ordinates (this allows us to reconstruct the whole head but

not just the face) and (2) we use two additional displace-

ment values for the polar and azimuthal angles, as well as

RGB channels, as in [15].

The Bump Image is a 2-D unwrapped spherical map of

the head. To build this spherical map, we have to first obtain

points in the local coordinate system of the head. Once the

points are transformed to the local coordinate system (see

Section 3.2) we change the coordinate representation from

local Cartesian coordinates to local spherical coordinates.

The map is formed such that the horizontal distance on the

map corresponds to φ and the vertical distance corresponds

to θ. The value in the first channel can be represented by

R(θ, φ), which denotes the radius value at a pixel corre-

sponding to a specified θ and φ. The θ and φ are rounded

off by discarding the decimal values, which gives us a res-

olution of 1.0 degree. By losing out on decimal values as

done in [5] we will obtain a really coarse map, hence (as

proposed in [15]) we record the lost precision in the second

and third channels of the Bump Image. The second channel

encodes the lost precision of θ while forming the map, simi-

larly the third channel encodes the lost precision of φ while

forming the map. The lost precision can be computed as

θprecision = θ−�θ�, φprecision = φ−�φ�. The remaining

three channels encode the color (RGB) information.

3.2. Initialization

In order to initialize our proposed 3-D face representa-

tion we use the Kinect SDK v1.7 [13], which is equipped

with skeletal tracking. The SDK tracking system provides a

rough estimate of the location of the head. We make use of

the tracked skeletal nodes of the head and the shoulder cen-

ter to identify the approximate center of the head in the first

RGB-D frame. After estimating the position of the head

center a new coordinate system is assigned to the head with

the origin located at the estimated head center. The radius

of the head (we use the sphere to identify points that belong

to the head) is then estimated using the median distance of

points nearby the center of the head to roughly segment out

the head from the rest of the depth image.

Let �xls, �yls,�zls be the local coordinate system of the

head. The �yls axis is the unit vector aligned along the

line connecting the head node and the shoulder center node

tracked by the SDK tracking system. The remaining two

axes can be obtained by computing two orthogonal vec-

tors to the �yls axis. From the estimated axes and the head

center c we can define a transformation Tws2ls that trans-

forms points from the sensor coordinate system (can also

be termed as world coordinate system since we assume that

the sensor is stationary) to the newly defined local coordi-

69

nate system of the head.
Suppose that p = (Px, Py, Pz, 1)

� is a point in the
world coordinate system, then the corresponding point p′ =
(P ′x, P

′
y, P

′
z, 1)

� in the local coordinate system of the head

can be computed by p′ = (Tws2ls · Tpose) · p. Namely,
⎡
⎢⎢⎣
P ′
x

P ′
y

P ′
z

1

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣
Xlsx Ylsx Zlsx Cx

Xlsy Ylsy Zlsy Cy

Xlsz Ylsz Zlsz Cz

0 0 0 1

⎤
⎥⎥⎦ · Tpose ·

⎡
⎢⎢⎣
Px

Py

Pz

1

⎤
⎥⎥⎦(1)

where Tpose is the 4 × 4 pose matrix of the head in the current

RGB-D frame, (Cx, Cy, Cz) is the head center in world coordi-

nate system and the terms (Xlsx , Xlsy , Xlsz), (Ylsx , Ylsy , Ylsz),
(Zlsx , Zlsy , Zlsz) respectively correspond to �xls axis , �yls axis

and �zls axis of the local coordinate system of the head expressed

in the world space coordinates.

Note that, for every pixel in the depth image the SDK assigns

a player index indicating that a particular point belongs to a fore-

ground, which in our case is the target user. This indexing helps

to segment the user from the background. To segment the head we

consider only those points that are within a radius of 20.0 cm of

the estimated head center. There are many factors to consider for

approximating the circumference of the human head like region,

gender, athletic, non-athletic, etc. We chose to approximate the

radius of the head as 20.0 cm which is a large estimate, so as to

take into consideration all categories of people. To further refine

our estimate, we transform the point cloud to the local coordinate

system and then transform it again to the spherical coordinates and

estimate the median of the radii of the points converted to spherical

coordinates. The median value is a rough estimate of the radius of

the head. Using this estimated radius, the point cloud is segmented

again, resulting in removing erroneous points.

3.3. Data Preparation
In the frame-to-global-model fusion framework, incoming

RGB-D frames have first to be aligned to the current global model.

To do so we use the GPU version of GICP, as proposed in [6],

which proved to be fast with sufficient accuracy. In this approach,

a predicted RGB-D frame to which the incoming RGB-D frame is

aligned has to be generated from the global model. By doing so,

projected point association can be used for fast GPU point match-

ing. To generate the predicted RGB-D image with respect to the

lastly computed pose of the head we use OpenGL Frame Buffer

Object (FBO) capacities together with the 2-D grid organization of

data given by the Bump Image. More precisely, the 2-D grid pro-

vides us with a natural 3-D quadrangulation of the global model

that can be rendered in the camera image plane using OpenGL

rendering capacities.

With the advent of CUDA and OpenGL interoperability ([10],

[11]), we can generate RGB-D images efficiently as we can map

the FBO buffer’s memory and read back the refined data and re-

project it to the world coordinate system from OpenGL’s view con-

text. Since the FBOs reside in a GPU’s texture cache, the reading

and writing process is executed with minimum overhead.

3.4. Head Modeling
The recent work on dense 3-D modeling using an RGB-

D camera has demonstrated the superiority of the frame-to-

global-model (FGM) framework over the frame-to-reference-

frame (FRF) framework. This is why we strive to employ the FGM

framework for reconstructing 3-D models of the head. The FGM

framework consists of dynamically updating the global model with

live depth measurements while using it to register incoming depth

images. To be more precise, the global model (Bump Image in

our case) is initialized with the first depth image (see Section 3.2)

and then augmented by the subsequent frames. For each subse-

quent frame, a predicted depth image is generated from the current

global model, to which the incoming depth image is aligned.

To efficiently perform the FGM framework two tasks are of

major importance: (1) integration part (i.e. how to update the

global model with incoming frames) and (2) depth image predic-

tion (i.e. how to quickly and accurately generate a depth image

from the updated global model). For the task (1) we employ the

view-centric integration strategy (as proposed in [15]) that takes

into account the directional bias of the noise in the depth image,

and we contribute in the task (2) by demonstrating the potential

of interoperability between OpenGl and Cuda for fast depth image

generation using a spherical Bump Image (see Section 3.3).

Bump Image

Human face
RGB-D image

camera

camera

Same point on
the face

Noise direction

Noise direction

Noisy measurements

Projection lines

Different pixels

Actual 3D point

Figure 2: The same point projects onto different pixels.

Bump Image

Human face
RGB-D image

camera

camera

Different points on
the face

Noise direction

Noise direction

Noisy measurements

Projection line

Same pixel

Actual 3D points

Figure 3: Two different points project onto the same pixel.

Depth measurements’ integration. As proposed in [6] or in

[5] we employ the running average to integrate new measurements

in the global model while reducing input noise. In order to mini-

mize the noise a temporal mean filter is employed and points lying

within 1cm deviation to the global model are subjected to mean

filtering. Note that a crucial, implicit assumption for this approach

70

Algorithm 1 Merge

Require: Two aligned depth images D1 and D2, their color

images rbg1 and rgb2, and a projected confidence image

πMask corresponding to D2.

Ensure: A merged depth image Dmerge, a color image

rgbmerge and an updated projected confidence image

πMaskmerge.

for (i ∈ [1 : col], j ∈ [1 : row]) (col and row are the

number of columns and rows respectively in the depth

images) do
if ‖D1(i, j)−D2(i, j)‖ ≤ 1.0 cm then

Dmerge(i, j)← D1(i,j)+D2(i,j)πMask(i,j)
1+πMask(i,j)

rgbmerge(i, j)← rgb1(i,j)+rgb2(i,j)πMask(i,j)
1+πMask(i,j)

πMaskmerge(i, j)← πMask(i, j) + 1
else if πMask(i, j) > 1.0 then

Dmerge(i, j)← D2(i, j)
rgbmerge(i, j)← rgb2(i, j)
πMaskmerge(i, j)← πMask(i, j)

else if D1(i, j) > 0.0 then
Dmerge(i, j)← D1(i, j)
rgbmerge(i, j)← rgb1(i, j)
πMaskmerge(i, j)← 1.0

else
Dmerge(i, j)← 0
rgbmerge(i, j)← (0.0, 0.0, 0.0)

πMaskmerge(i, j)← 0
end if

end for
return Dmerge, rgbmerge and πMaskmerge

to be efficient is that all measurements that are averaged together

must come from the same point on the head. A glaring example is

that averaging points belonging to the nose with those belonging

to the ear does not work. This is why registering incoming frame

has to be done before integration and is a crucial process.

However, even if the registration process is successful a prob-

lem arises due to noise when integrating new depth measurements

into the Bump Image as seen in [5]. The fact is that (as shown

in Figs. 2 and 3), due to noise the same point viewed in two dif-

ferent frames may be projected into different pixel coordinates in

the Bump Image, and also two different points of the head may be

projected into the same pixel of the Bump Image. This results into

erroneous averaging computations. In order to avoid this problem,

the integration process should be executed directly in the camera

plane domain rather than in the Bump Image domain. This is be-

cause the noise in a depth image obtained with an RGB-D camera

is mainly distributed along the viewing direction.

From the current predicted depth image we first align the in-

coming depth image to the predicted one using the GPU GICP

[6]. We then generate a new depth image from the Bump Image

with the lastly estimated head pose, as well as its corresponding

projected confidence image. To generate the projected confidence

image, we use a confidence mask (with the same dimension as the

Algorithm 2 UpdateBumpImage

Require: A depth image D, a color image rgb and its cor-

responding projected confidence image πMask, a Bump

Image Bump and its confidence map Mask.

Ensure: The updated Bump Image Bump and its confi-

dence map Mask.

for (i ∈ [1 : col], j ∈ [1 : row]) do
p(i, j)← vertex at pixel (i, j) in D
p′(i, j) ← vertex in local coordinate system of the

head (Equation (1)).

(k, l)← the pixel coordinates in Bump corresponding

to the spherical coordinates of p′(i, j)
if Mask(k, l) < πMask(i, j) then

Bump(k, l) ← (R(θ, φ), θprecision, φprecision,

rgb(i, j)) (Section 3.1)

Mask(k, l)← πMask(i, j)
end if

end for
return Bump and Mask

Bump Image) where each pixel of the confidence mask counts the

number of times where the point in the Bump Image has been ob-

served. We then perform the running average between pixels in

the incoming depth image (with confidence of 1.0) and those of

the newly generated depth image (with confidence of the value in

the projected confidence image) to generate a merged depth im-

age with updated confidence values. The merged depth image

becomes the predicted depth image for the next incoming frame.

All pixels of the new predicted depth image are projected onto the

Bump Image and the values of a pixel (i, j) in the Bump Image are

replaced if and only if a pixel in the predicted depth image project

onto this pixel (i, j) and if its new confidence value is higher than

the one at the pixel (i, j) in the Bump Image. This process is de-

tailed in Algorithms 1, 2 and 3.

Algorithm 3 3-D head modeling

Require: A predicted depth image Dk, a Bump Image

Bumpk, its corresponding confidence map Maskk, an

input depth image D1 and the color image rgb1.

Ensure: A new predicted depth image Dk+1 and an up-

dated Bump Image Bumpk+1 with its corresponding

confidence map Maskk+1.

Tcurr ← AlignGICP(D1, Dk) ([6])

Tpose ← Tpose ∗ Tcurr

(D2, rgb2, πMask)← RenderMesh(Bumpk, Maskk,

T−1
pose) (Section 3.3)

(Dk+1, rgbk+1, πMaskk+1)← Merge(D1, rgb1, D2,

rgb2, πMask)

(Bumpk+1, Maskk+1)← UpdateBumpImage(Dk+1,

rgbk+1, πMaskk+1, Bumpk)

return Dk+1, Bumpk+1 and Maskk+1

71

Figure 4: (a) Model obtained by laser scanner (b) Model obtained by our system (c) Model obtained by Kinect Fusion

algorithm (d) Heatmap obtained for face reconstructed by our system (e) Heatmap obtained for face reconstructed by Kinect

Fusion (f) Color LUT, indicates the color used to represent deviation

4. Experiments

To demonstrate the effectiveness of our proposed method, we

evaluated our algorithm by comparing our results with the one ob-

tained with a high accuracy laser scanner. We also compared our

results with Kinect Fusion [6], a state-of-the-art dense 3-D model-

ing system using an RGB-D camera that also employs the frame-

to-global-model strategy but is purely focusing on accuracy of the

generated 3-D model.

We employed a Konica Minolta Vivid 910 range scanner to

obtain the ground truth of the faces shown in Fig. 4 (a). Note that

we are comparing only the facial geometry since the laser scanner

fails in recognizing hair and the data is very noisy in hairy regions

of the head. We used the software ”Kinect Fusion Explorer-D2D”

provided with the Kinect for Windows Developer Toolkit v.1.7.0

[13] to generate the 3-D meshes shown in Fig. 4 (c). Note that

when using the laser scanner or Kinect Fusion, the user should

remain still during the scanning process, while with our method

the user can be moving in front of the camera. Our method was

run on an Intel Xeon processor clocked at 3.47 GHz. The GPU

in use is a NVIDIA GeForce GTX 580. Our method runs at 30
fps when the Bump Image in use is of resolution (360 × 180),
at 22 fps for an increased resolution of 2 ∗ (360 × 180) and at

20 fps for a resolution of 3 ∗ (360 × 180). With a resolution of

3 ∗ (360× 180) the Bump Image consumed 13.35MB of memory

(6 floats for each pixel). In comparison, Kinect fusion consumed

1000MB of memory for a volume of (1.0×1.0×1.0)m with 640
subdivisions in each dimension (1 float for each voxel).

Figure 4 shows examples of quantitative results on the accuracy

of the generated 3-D models of the face obtained with our pro-

posed method and with Kinect Fusion. To quantify the accuracy

of the obtained results we compared them with the 3-D models ob-

tained with the laser scanner as shown in Fig. 4 (a) (they are con-

sidered as the ground truth). For each example, we build heat maps

that indicate the deviation of the 3-D models obtained with our

proposed method and with Kinect Fusion from the ground truth.

Namely, we first aligned the 3-D models to the ground truth mod-

els using the GICP algorithm (the pose of the 3-D models were

initialized manually), and then generated depth images for all 3-D

models with respect to the pose of the head obtained with the laser

scanner. The heat maps shown in Figure 4 (d) and (e) were ob-

tained by computing the absolute residual error in the depth value

for each pixel1. From Fig. 4 we can see that our model is very close

to the laser scan, in fact the mean deviations from the ground truth

are 0.78 mm for the first face, 0.92 mm for the second face and

1.3 mm for the third face, while those from Kinect fusion are 1.6

1Note in Fig. 4 points that do not belong to the face were removed

manually using MeshLab only for the experiment of generating heat maps.

72

mm, 1.7 mm and 1.7 mm respectively. Fig. 5 shows the distribu-

tion of errors in the heat maps generated in Fig. 4. From the error

distribution we can see that most of the points of the 3-D models

obtained using our proposed method lie close to the ground truth.

We stress that our proposed method performs at least as well as

Kinect Fusion in terms of accuracy while requiring drastically less

amount of memory.

Figure 5: (left) Error Distribution in Face-1 (Fig. 4), (right)

Error Distribution in Face-2 (Fig. 4)

Figures 6 and 7 demonstrate the advantage of using the FGM

framework over the FRF framework [5]. We can see that our pro-

posed method was able to reconstruct the 3-D models of the head

even though the pose of the head became very different from the

first reference frame. In the extreme case shown in Fig. 6 at some

point there is no more overlapping regions between the current

frame and the reference frame. In this situation the FRF frame-

work does not work. In contrast, our method also performed wells

with respect to zooming-in or zooming-out effects (Fig. 7), which

are challenging for the FRF framework since it implies registering

cloud of points in different resolutions.

One of the advantages of using the Bump Image for represent-

ing the final model is the ease of varying resolution. Because of

the compactness of the representation even with a system of base

configuration our proposed method can produce a dense model.

Figure 8 shows results obtained with three different resolutions for

the Bump Image. As we can see the higher the resolution becomes,

the finer the details become. Note that even with the lowest reso-

lution, the obtained 3-D models are of descent quality. Note that,

however, increasing the resolution may not always be judicious.

Indeed, for a pixel in the Bump Image even though the resolu-

tion increases less points are accumulated for the running average,

which results in a more spiky model. Then it requires more time

to obtain a smooth model and the user must move slower to avoid

misalignment that may come from noisy normal estimates.

5. Conclusion And Discussion
We have presented a novel method for the automatic creation of

accurate and compact 3-D face models. By using the FGM frame-

work and the view-centric integration method, which takes into

account the directional nature of the noise of the RGB-D cam-

era, we obtained highly accurate 3-D face models. Experimental

results compared against results obtained with a laser scanner con-

firm the accuracy of the 3-D face models obtained with our pro-

posed method. The use of 2-D Bump Images to record texture and

local geometry realized the low memory use.

Figure 6: 360 degree tracking sequence (left) Incoming

frame (middle) Global model (right) Re-projected Bump

Image (final model)

Due to the compactness of the representation, accuracy and

speed of our proposed method, 3-D telepresence applications like

Skype or Face Time can be made viable with current internet

speeds. The 6-D Bump Image represents both the local geome-

try of the head and the RGB information which is sufficient to

re-project the head back in 3-D. For any peer-to-peer video con-

ferencing application we can transmit live Bump Images and re-

project it to 3-D at the receiving end. In addition to the compact-

ness of the Bump Images, the images can be scaled based on the

bandwidth available at run-time. During low bandwidth conditions

the Bump Images can be scaled down to represent a coarse geome-

try of the face, similarly during high bandwidth conditions a higher

resolution of Bump Image can be transmitted like 3 ∗ (360× 180)
which is still of a lower resolution than the 720p video that ap-

plications like Skype are capable of streaming. Note that our pro-

posed method can be extended for reconstructing other parts of the

body to produce a full body model. Note also that our proposed

method can be extended to record facial expressions to provide a

more realistic feel for video conferencing applications.

73

Figure 7: Various Poses tracked by the system (left) In-

coming frame (middle) Global model (right) Re-projected

Bump Image (final model)

Figure 8: (top) Bump Image of (360×180) resolution (mid-

dle) Bump Image of 2 ∗ (360 × 180) resolution (bottom)

Bump Image of 3 ∗ (360× 180) resolution

References

[1] V. Blanz and T. Vetter. Face recognition based on fitting a 3d

morphable model. IEEE Transactions on Pattern Analysis
and Machine Intelligence, 25(9):1063–1074, 2003. 2

[2] P. Breuer, K.-I. Kim, W. Kienzle, B. Scholkopf, and V. Blanz.

Automatic 3d face reconstruction from single images or

video. In Proc. of the 8th IEEE International Conference
on Automatic Face Gesture Recognition (FG ’08), pages 1–

8, 2008. 2

[3] Chaoyang, L. Wang, Y. Wang, F. Matsushita, K., and Soong.

Binocular photometric stereo acquisition and reconstruction

for 3d talking head applications. In Interspeech 2013 sub-
mission, 2013. 3

[4] P. Henry, M. Krainin, E. Herbst, X. Ren, and D. Fox. Rgb-

d mapping: Using depth cameras for dense 2d modeling of

indoor environments. Proc. of International Symposium on
Experimental Robotics, 2010. 1

[5] M. Hernandez, J. Choi, and G. Medioni. Laser scan qual-

ity 3-d face modeling using a low-cost depth camera. Proc.
of the 20th European Signal Processing Conference (EU-
SIPCO), pages 1995–1999, 2012. 1, 2, 3, 4, 5, 7

[6] S. Izadi, D. Kim, O. Hilliges, D. Molyneaux, R. Newcombe,

P. Kohli, J. Shotton, S. Hodges, D. Freeman, A. Davison, and

A. Fitzgibbon. Kinectfusion: real-time 3d reconstruction and

interaction using a moving depth camera. In Proc. of UIST,

pages 559–568, 2011. 1, 2, 4, 5, 6

[7] B. Kainz, S. Hauswiesner, G. Reitmayr, M. Steinberger,

R. Grasset, L. Gruber, E. Veas, D. Kalkofen, H. Seichter,

and D. Schmalstieg. Omnikinect: real-time dense volumet-

ric data acquisition and applications. Proc. of the 18th ACM
symposium on Virtual reality software and technology, pages

25–32, 2012. 1

[8] I. Kemelmacher-Shlizerman and R. Basri. 3d face recon-

struction from a single image using a single reference face

shape. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 33(2):394–405, 2011. 3

[9] R. A. Newcombe, A. J. Davison, S. Izadi, P. Kohli,

O. Hilliges, J. Shotton, D. Molyneaux, S. Hodges, D. Kim,

and A. Fitzgibbon. Kinectfusion: Real-time dense sur-

face mapping and tracking. Proc. of the 10th IEEE Inter-
national Symposium on Mixed and Augmented Reality (IS-
MAR), pages 127–136, 2011. 1, 2

[10] H. Nguyen. Gpu gems 3. Addison-Wesley Professional, first

edition, 2007. 4

[11] NVIDIA. NVIDIA CUDA Programming Guide 2.0. 2008. 4

[12] H. Pfister, M. Zwicker, J. Baar, and M. Gross. Surfels: Sur-

face elements as rendering primitives. Proc. of ACM Trans-
actions on Graphics (SIGGRAPH’00), 2000. 1

[13] M. K. SDK. Version 1.7. 3, 6

[14] A. Segal, D. Hhnel, and S. Thrun. Generalized-icp. Robotics:
Science and Systems’09, pages –1–1, 2009. 2

[15] D. Thomas and A. Sugimoto. A flexible scene representation

for 3d reconstruction using an rgb-d camera. Proc. of Inter-
national Conference on Computer Vision (ICCV 13), 2013.

1, 2, 3, 4

[16] M. Zollhofer, M. Martinek, G. Greiner, M. Stamminger,

and J. Submuth. Automatic reconstruction of personalized

avatars from 3d face scans. Comput. Animat. Virtual Worlds,

2(2-3):195–202, 2011. 1, 2, 3

74

