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On connectivity of discretized 2D explicit curve
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Abstract Preserving connectivity is an important property commonly required for object discretiza-
tion. Connectivity of a discretized object differs depending on how to discretize its original object.
The morphological discretization is known to be capable of controlling the connectivity of a dis-
cretized object, by selecting appropriate structuring elements. The analytical approximation, which
approximates the morphological discretization by a finite number of inequalities, on the other hand,
is recently introduced to reduce the computational cost required for the morphological discretization.
However, whether this approximate discretization has the same connectivity that the morphological
discretization has is yet to be investigated. In this paper, we study the connectivity relationship be-
tween the morphological discretization and the analytical approximation, focusing on 2D explicit
curves. We show that they guarantee the same connectivity for 2D explicit curves.
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1 Introduction

An object such as a curve or line is continuous in the real world while in the computer it is discretized
to be stored and manipulated. We therefore need a discrete representation of a given object, which
differs depending on how to discretize it. An important property commonly required for object
discretization is to preserve the connectivity of an original object. In this paper, we consider dis-
cretization of a explicit continuous curve in 2D, i.e., a continuous function in the form of y = f(x)
in the xy-plane, primarily focusing on the connectivity of discretized curves.

Two integer points v,w (v ̸= w) ∈ Z2 are said to be 0-adjacent if ∥v−w∥∞ ≤ 1, and 1-adjacent
if ∥v − w∥1 ≤ 1 (Fig. 1). Note that ∥(x, y)∥∞ = max(|x|, |y|) and ∥(x, y)∥1 = |x| + |y|.
A set of integer points D ⊂ Z2 is said to be k-connected for k ∈ {0, 1}, if for any two points
v,w (v ̸= w) ∈ D there exists a sequence of integer points in D connecting v and w, such that
any two consecutive points in the sequence are k-adjacent. Figure. 2 shows k-connected sets for
k = 0, 1. We remark that if D is 1-connected then it is 0-connected.

The discretization most commonly used is the morphological discretization [11–14]. In this ap-
proach, for a continuous curve, its discretized curve is defined as a set of the integer points, whose
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Figure 1: k-adjacent points of a discrete point v.

(a) k = 0. (b) k = 1.

Figure 2: k-connected sets in Z2.

Minkowski additions with a so-called structuring element intersects with the original curve. Some
classical discretizations, such as the supercover discretization [9] or the grid-intersection discretiza-
tion [15], can be seen as particular cases of the morphological discretization. The morphological
discretization can control the connectivity in the discrete space of a discretized curve by selecting
appropriate structuring elements [6–8, 21–23].

How to discretize a curve and how to compute its discretized one are different issues. The compu-
tational cost required for the morphological discretization is expensive. On the other hand, repre-
senting a discretized curve by a finite set of Diophantine inequalities (from which we choose only
integer points) was introduced in [19], where a discrete 2D straight line is defined by two inequalities.
Such a representation, called the analytical representation, has been developed for more complicated
discrete curves in subsequent researches [1–5,10,22,23]. A discretized curve with an analytical rep-
resentation is straightforwardly computed at low cost, just by evaluating inequalities for each integer
point. This property is useful also for curve fitting problems [16–18, 20, 24, 25]. To reduce the com-
putational cost further, an approximation of the analytical representation was recently introduced
in [22], where only vertices of the employed structuring element are evaluated to have the system
of Diophantine inequalities. This approximation is capable of handling even further complicated
(and implicit) curves/surfaces in any dimensions. However, whether this approximation, called the
analytical approximation, has the same connectivity that the original morphological discretization
has is yet to be investigated.

In this paper, we study the relationship on the connectivity between discretized 2D explicit curves,
by the morphological discretization and by the analytical approximation. We show that the analytical
approximation has the same connectivity that the morphological discretization has for 2D explicit
curves.
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Figure 3: Two different interpretations of morphological discretization DS(E). Red points
depict DS(E).

2 Morphological discretization and analytical approxima-
tion

In this section, we first introduce the general definition of the morphological discretization, with two
structuring elements respectively guaranteeing 1-connectivity and 0-connectivity (Section 2.1). We
then give the analytical approximation of the morphological discretization of a 2D explicit curve
with these structuring elements, based on the approach introduced in [22] (Section 2.2).

2.1 Morphological discretization

A morphological discretization (see [11–14]) of a curve E ⊂ R2, with a structuring element S ⊂
R2, is defined by

DS(E) = (E ⊕ Š) ∩ Z2, (1)

where Š = {−s : s ∈ S}. ⊕ denotes the Minkowski addition (E ⊕ Š = {e+ š : e ∈ E, š ∈ S}).
(1) can be also written as

DS(E) =
{
v ∈ Z2 : (v ⊕ S) ∩ E ̸= ∅

}
. (2)

Figure 3 illustrates the two different interpretations of DS(E) in (1) and (2).

Using different structuring elements for the same curve results in different discretizations, and in
particular, different connectivities (see Fig. 4 for example). How to select an appropriate structuring
element is therefore important. In this paper, we consider two structuring elements defined by

B∞ =

{
p ∈ R2 : ∥p∥∞ ≤ 1

2

}
,

B1 =

{
p ∈ R2 : ∥p∥1 ≤ 1

2

}
.

The morphological discretization with B∞, i.e., DB∞(E), is equivalent to the supercover discretiza-
tion of E, which is known to be 1-connected if E is connected in R2 [21] (Fig. 4(a)). DB1(E), on
the other hand, is 0-connected for connected E (Fig. 4(b)), which has yet to be reported to the best
of our knowledge; here we give its proof.
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Figure 4: Morphological discretizations using structuring elements B∞ and B1. (a) is
1-connected while (b) is 0-connected.
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Figure 5: Illustration for proof of Theorem 1. Blue region depicts {ui} ⊕ B1, while red
region depicts A0(ui)⊕B1.

Theorem 1. DB1(E) is 0-connected for connected E ⊂ R2, as long as it has at least two different
integer points.

Proof. Let s, t be any two different integer points in DB1(E). We show that there exists a sequence
of integer points from s and t in DB1(E), such that any two consecutive points in the sequence are
0-adjacent. We call such a sequence a 0-path from s to t in DB1(E). We denote by p, q ∈ R2

intersection points of E respectively with {s} ⊕ B1 and {t} ⊕ B1. Then, since E is connected,
there exists a segment C ⊂ E whose end points are p and q. We now consider the unique path along
C from p to q, with collecting in the path integer points u1, . . . ,un, whose Minkowski additions
with B1 (i.e., {ui} ⊕ B1, i = 1, . . . , n) intersect with C. This process makes a 0-path from s
to t in DB1(E), which is proven as follows. First, it is obvious that u1 = s and un = t. Next,
{u1, . . . ,un} ⊂ DB1(E) because {u1, . . . ,un} = DB1(C) and C ⊂ E. Finally, we show
that ui+1 is a 0-adjacent point of ui for i = 1, . . . , n − 1. We denote by A0(v) the set of the
0-adjacent points of v ∈ Z2 (see Fig. 1(a)). Any point in {ui}⊕B1 is then either contained also in
A0(ui)⊕ B1 or enclosed by it as in Fig. 5. Therefore, the path along C from an intersection point
with {ui}⊕B1 toward the terminal point q, has to cross A0(ui)⊕B1 before reaching the “outside”
of it. This indicates that ui+1 ∈ A0(ui). There exists a 0-path from s to t, accordingly.

2.2 Analytical approximation

Computing DS(E) for a given E ⊂ R2 with S = B∞, B1 requires evaluating for each v ∈ Z2

whether or not {v}⊕S intersects with E. This is computationally expensive. When E is an explicit



curve, i.e., in the form of y = f(x), however, we can compute it approximately at low cost (within
a finite region in Z2) based on the approach introduced in [22].

A 2D explicit continuous curve is represented by

E =
{
(x, y) ∈ R2 : y = f(x)

}
, (3)

where f : R → R is a continuous function. From (2), for E in (3), DS(E) can be written as

DS(E) =
{
(xint, yint) ∈ Z2 : yint + ty = f(xint + tx) for ∃(tx, ty) ∈ S

}
. (4)

Note that yint + ty = f(xint + tx) means (xint + tx, yint + ty) ∈ E. Since f is continuous, the
intermediate-value theorem allows for connected S to rewrite (4) as

DS(E) =

(xint, yint) ∈ Z2 :
yint ≥ min

(tx,ty)∈S
(f(xint + tx)− ty) ,

yint ≤ max
(tx,ty)∈S

(f(xint + tx)− ty)

 . (5)

Note that both B∞ and B1 are connected.

For S = B∞, B1, unfortunately, evaluating the minimum and maximum of f(xint + tx)− ty with
respect to (tx, ty) ∈ S is practically impossible, because S has infinite elements. Following [22],
however, we can approximately compute (5) by replacing S = B∞, B1 with finite subsets V∞, V1

defined by

V∞ =

{(
−1

2
,−1

2

)
,

(
−1

2
,
1

2

)
,

(
1

2
,−1

2

)
,

(
1

2
,
1

2

)}
,

V1 =

{(
−1

2
, 0

)
,

(
0,−1

2

)
,

(
0,

1

2

)
,

(
1

2
, 0

)}
.

They are the sets of the vertices respectively of B∞ and B1 as in Fig. 6. We then obtain the
analytical approximations for DB∞(E) and DB1(E) respectively as

D′
V∞(E) =

{
(xint, yint) ∈ Z2 :

yint ≥ min
{
f
(
xint − 1

2

)
, f

(
xint +

1
2

)}
− 1

2
,

yint ≤ max
{
f
(
xint − 1

2

)
, f

(
xint +

1
2

)}
+ 1

2

}
,

D′
V1
(E) =

{
(xint, yint) ∈ Z2 :

yint ≥ min
{
f
(
xint − 1

2

)
, f

(
xint +

1
2

)
, f (xint)− 1

2

}
,

yint ≤ max
{
f
(
xint − 1

2

)
, f

(
xint +

1
2

)
, f (xint) +

1
2

} }
.

For each (xint, yint) ∈ Z2, the inequalities in (5) are evaluated at only the four vertices of S =
B∞ (resp. B1) in D′

V∞(E) (resp. D′
V1
(E)), while they have to be evaluated at all the points in

S = B∞ (resp. B1) in the morphological discretization. Therefore the analytical approximation
is computationally more inexpensive than the morphological discretization. On the other hand, the
analytical approximation may fail in collecting some integer points involved in the morphological
discretization as in Figs. 7 and 8 (in the next section, we will see that such cases arise when the
Minkowski addition of an integer point and B∞ [resp. B1] is intersected by E, but not by its
piecewise linear approximation defined in (6) [resp. (7)]). We remark that we can also replace B∞
and B1 with larger finite subsets than V∞ and V1 for more accurate approximation. However, V∞
and V1 are sufficient at least to obtain the same connectivities as the morphological discretization,
which is proven in the next section.

3 Connectivity relation between morphological discretiza-
tion and analytical approximation

In this section, we show that the analytical approximation for a 2D explicit curve introduced in the
last section has the same connectivity in Z2 that its morphological discretization has. To prove this,



(a) V∞. (b) V1.

Figure 6: V∞ and V1 (red points). They are the sets of the vertices respectively of B∞ and
B1 (depicted in blue).
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Figure 7: DB∞(E) and D′
V∞

(E) (red points on the grids) for E = {(x, y) ∈ R2 : y =
f(x) = 0.4571x3−3.127x2+5.019x+1.228}. In (b), points (x, y) ∈ Z2⊕V∞ satisfying
y > f(x) are depicted in green, while those satisfying y < f(x) in orange; an integer point
v ∈ Z2 is in D′

V∞
(E) iff {v} ⊕ V∞ (four points) are depicted in both colors or include a

point on E.

we show that the discretization of an explicit curve E by the analytical approximation can be seen
as the morphological discretization of a piecewise linear approximation of E. We first show that
D′

V∞(E) has the same connectivity with DB∞(E).
Theorem 2. D′

V∞(E) is 1-connected.

Proof. We show that D′
V∞(E) = DB∞(E′) for E′ defined by

E′ = {(x, y) ∈ R2 : y = f ′(x)}, (6)

where

f ′(x) = f
(⌊
x+ 1

2

⌋
− 1

2

)
+

(
x−

(⌊
x+ 1

2

⌋
− 1

2

)) (
f
(⌊
x+ 1

2

⌋
+ 1

2

)
− f

(⌊
x+ 1

2

⌋
− 1

2

))
.

E′ is a piecewise linear approximation of E as in Fig. 9. We remark that f ′(xint+
1
2
) = f(xint+

1
2
),

and f ′(x) is linear within
[
xint − 1

2
, xint +

1
2

]
for ∀xint ∈ Z. DB∞(E′) is 1-connected because

E′ is connected in R2.
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Figure 8: DB1(E) and D′
V1
(E) (red points on the grids) for E = {(x, y) ∈ R2 : y =

f(x) = 0.4571x3−3.127x2+5.019x+1.228}. In (b), points (x, y) ∈ Z2⊕V1 satisfying
y > f(x) are depicted in green, while those satisfying y < f(x) in orange; an integer
point v ∈ Z2 is in D′

V1
(E) iff {v}⊕V1 (four points) are depicted in both colors or include

a point on E.
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Figure 9: E and E′.

From (5), DB∞(E′) is written as

DB∞(E′) =

(xint, yint) ∈ Z2 :
yint ≥ min

(tx,ty)∈B∞

(
f ′(xint + tx)− ty

)
,

yint ≤ max
(tx,ty)∈B∞

(
f ′(xint + tx)− ty

)  .

We will transform it into D′
V∞(E). Since tx and ty are independent of each other for (tx, ty) ∈ B∞,

the extrema of f ′(xint+tx)−ty with respect to (tx, ty) are obtained by minimizing and maximizing
it independently for tx and ty . With respect to ty , it is obviously minimal with ty = 1

2
, and maximal

with ty = − 1
2

. With respect to tx, on the other hand, the extrema are at tx = − 1
2

or 1
2

because
f ′(x) is linear within

[
xint − 1

2
, xint +

1
2

]
for ∀xint ∈ Z. Consequently,

DB∞(E′) =

(xint, yint) ∈ Z2 :
yint ≥ min

{
f ′

(
xint −

1

2

)
, f ′

(
xint +

1

2

)}
− 1

2
,

yint ≤ max

{
f ′

(
xint −

1

2

)
, f ′

(
xint +

1

2

)}
+

1

2

 ,

which is equal to D′
V∞(E), because f ′(xint ± 1

2
) = f(xint ± 1

2
) for ∀xint ∈ Z.
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Figure 10: E and E′′.

We next show that D′
V1
(E) has the same connectivity with DB1(E).

Theorem 3. D′
V1
(E) is 0-connected.

Proof. We show that D′
V1
(E) = DB1(E

′′) for E′′ defined by

E′′ = {(x, y) ∈ R2 : y = f ′′(x)}, (7)

where
f ′′(x) = f

(
⌊2x⌋
2

)
+ 2

(
x− ⌊2x⌋

2

)(
f
(

⌊2x⌋+1
2

)
− f

(
⌊2x⌋
2

))
.

E′′ is a piecewise linear approximation of E as in Fig. 10. We remark that f ′′(xint
2

) = f(xint
2

), and
f ′′(x) is linear within

[
xint
2

, xint+1
2

]
for ∀xint ∈ Z. From Theorem 1, DB1(E

′′) is 0-connected
because E′′ is connected in R2.

DB1(E
′′) is written as

DB1(E
′′) =

(xint, yint) ∈ Z2 :
yint ≥ min

(tx,ty)∈B1

(
f ′′(xint + tx)− ty

)
,

yint ≤ max
(tx,ty)∈B1

(
f ′′(xint + tx)− ty

)  .

We will transform it into D′
V1
(E). Since − 1

2
+ |tx| ≤ ty ≤ 1

2
− |tx| for (tx, ty) ∈ B1, DB1(E

′′)
can be rewritten as

DB1(E
′′) =

(xint, yint) ∈ Z2 :

yint ≥ min
tx∈[− 1

2
, 1
2 ]

(
f ′′(xint + tx)−

1

2
+ |tx|

)
,

yint ≤ max
tx∈[− 1

2
, 1
2 ]

(
f ′′(xint + tx) +

1

2
− |tx|

)
 .

Here, the minimum of f ′′(xint + tx)− 1
2
+ |tx| and the maximum of f ′′(xint + tx)+

1
2
− |tx| with

respect to tx ∈
[
− 1

2
, 1
2

]
are at tx = − 1

2
, 0 or 1

2
, because they are linear within

[
xint − 1

2
, xint

]
and[

xint, xint +
1
2

]
. We thus obtain

DB1(E
′′) =(xint, yint) ∈ Z2 :

yint ≥ min

{
f ′′

(
xint −

1

2

)
, f ′′

(
xint +

1

2

)
, f ′′ (xint)−

1

2

}
,

yint ≤ max

{
f ′′

(
xint −

1

2

)
, f ′′

(
xint +

1

2

)
, f ′′ (xint) +

1

2

}
 ,

which is equal to D′
V1
(E), because f ′′(xint ± 1

2
) = f(xint ± 1

2
), and f ′′(xint) = f(xint) for

∀xint ∈ Z.

For 2D explicit curves, thus, the analytical approximation introduced in [22] guarantees the same
connectivity in Z2 that their morphological discretization does.



4 Conclusion

We investigated the connectivity relation between the morphological discretization and the analyt-
ical approximation introduced in [22] for 2D explicit continuous curves. We first showed that the
morphological discretization of a 2D continuous curve with the structuring element B1 (the ball of
radius 1

2
based on l1 norm) guarantees 0-connectivity of the obtained result. We then showed that

the discretization of a 2D explicit curve by the analytical approximation has the same connectivity
in Z2 that its morphological discretization has. Our proof was based on the idea that the analytical
approximation for a 2D explicit curve can be seen as the morphological discretization of a piecewise
linear approximation of the curve. Whether this property holds for parametric curves, or curves and
surfaces in higher dimensions, will be investigated in our future work.
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