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ABSTRACT

This paper presents a method for detecting salient objects in a

video where temporal information in addition to spatial infor-

mation is fully taken into account. Following recent reports

on the advantage of deep features over conventional hand-

crafted features, we propose the SpatioTemporal deep Fea-

ture (STF feature) that utilizes local and global contexts over

frames. With this feature, we compute the saliency map for

each frame through supervised learning of the Random For-

est. We then refine the saliency maps using our proposed Spa-

tioTemporal Conditional Random Field (STCRF). STCRF is

our extension of CRF toward the temporal domain and for-

mulates relationship between neighboring regions both in a

frame and over frames. STCRF leads to temporally consistent

saliency maps over frames, contributing to detect boundaries

of salient objects accurately and to reduce noise. Our inten-

sive experiments using publicly available benchmark datasets

confirm that our proposed method significantly outperforms

state-of-the-art methods.

Index Terms— Video saliency, SpatioTemporal CRF,

spatiotemporal deep feature, salient object detection

1. INTRODUCTION

Salient object detection from videos plays an important role

for many applications such as video re-targeting or visual

tracking. Saliency computation methods for videos are usu-

ally developed from bottom-up saliency models for still im-

ages by incorporating motion features to deal with moving

objects[1][2]. Top-down methods were also developed to in-

tegrate different features[3] for video saliency computation.

These existing saliency computation methods for videos are

based on hand-crafted features, which are not sufficiently ro-

bust for challenging cases, especially when the salient object

is presented in low-contrast and cluttered background; thus

they often fail in complex scenes.

Recent advances in deep learning using Convolutional

Neural Network (CNN) enable us to extract directly from

raw images/videos deep features, which are more powerful

Fig. 1. Examples of results obtained by our proposed method.

Top row images are original video frames, followed by the

corresponding saliency maps obtained using our method. The

second row images are before the refinement and the third row

images are our final results.

for discrimination and, furthermore, more robust than hand-

crafted features[4][5]. Indeed, saliency models for videos us-

ing deep features[6][7][8] have demonstrated superior results

over existing work utilizing only hand-crafted features. They,

however, extract deep features from each frame independently

and employ frame-by-frame processing to compute saliency,

resulting in not working well on dynamically moving objects.

This is because temporal information over frames is not taken

into account in computing either deep features or saliency

maps.

Computed saliency maps do not always reflect the shapes

of salient objects in videos. In order to segment salient ob-

jects, in particular, object boundaries, as accurately as pos-

sible while reducing noise, the refinement is usually applied

to the saliency maps as post-processing. Dense Conditional

Random Field (CRF) has been used to refine the saliency

map to improve spatial coherence and contour localization[6].

However, CRF is applied to each frame of a video separately,

meaning that only spatial contextual information is captured.

Again, temporal information over frames is not taken into ac-

count.

Motivated by the above observation, we propose a novel

framework using spatiotemporal information as fully as pos-

sible for salient object detection in videos. Our method con-
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Fig. 2. Pipeline of the proposed method at a single scale.

sists of the feature extraction and the saliency computation;

each of which utilizes spatiotemporal information as much

as possible. We introduce the SpatioTemporal deep Feature

(STF feature) that utilizes both local and global contexts over

frames. Our STF feature consists of local and global fea-

tures. The local feature aggregates over frames, deep features

extracted from each frame using a region-based CNN, and

global features is computed from temporal-segments using a

block-based CNN. The saliency computation, on the other

hand, has two steps: map computation and refinement. In

the map computation, we supervisedly train the Random For-

est (RF) using STF features. The refinement is executed by

using our extension of CRF, SpatioTemporal CRF (STCRF),

in which temporal consistency of regions over frames as well

as spatial relationship between regions in a frame is formu-

lated. With this refinement, boundaries of salient objects are

detected accurately with reduced noise (cf. Fig.1). Inten-

sive experiments demonstrate the superiority of our method

against the state-of-the-art methods.

We note that though an extension of dense CRF into

both spatial and temporal domains, called Dynamic CRF

(DCRF), has been used for object segmentation[9] and

saliency computation[3] in videos, our STCRF shares with

DCRF only the very general-level idea of utilizing spatial and

temporal information. The way to construct STCRF is to-

tally different from DCRF. DCRF is formulated at pixel-level

while STCRF is at region-level. Accordingly, STCRF is ca-

pable of exploiting spatial and temporal information more se-

mantically, which is more suitable to detect salient objects in

videos. To facilitate such semantic level expansion, the en-

ergy function in STCRF is defined using only deep features,

while DCRF is totally based on the combination of classical

hand-crafted features such as color and optical flow.

2. PROPOSED METHOD

Our goal is to compute the saliency map to accurately seg-

ment salient regions in every frame from an input video with

keeping in mind that temporal information is as fully used as

possible.

We segment an input video at multiple scales and compute

a saliency map at each scale at each frame, and then aggregate

all saliency maps at different scales at each frame into the fi-

nal saliency map. This follows our intuition that objects in a

video contain various salient scale patterns and an object at

a coarser scale may be composed of multiple parts at a finer

scale. In this work, we employ the temporal superpixel seg-

mentation method[10] to segment a video at three scale levels.

Figure 2 illustrates the pipeline of our proposed method at

a single scale. The final saliency map is computed by aggre-

gating all saliency maps (output of Fig. 2) at different scales.

In the following subsections, we explain how to compute a

saliency map at a scale.

2.1. Spatiotemporal Deep Feature Extraction

Our proposed STF feature is the concatenation of local and

global features (cf. Fig.2). The local feature is extracted us-

ing a region-based CNN followed by aggregation over frames,

while the global feature is computed using a block-based

CNN whose input is a temporal segment of the video.

A segmented region, namely, a superpixel, at each frame

is fed into the region-based CNN to extract its region-based

feature. As our region-based CNN, we use the publicly avail-

able pre-trained R-CNN model[4]. The region-based feature

contains the local context of the region but does not contain

temporal information because it is computed frame-wisely.

In order to incorporate temporal information, we aggregate

region-based features over frames, resulting in the consistent

local feature over frames. Just uniformly averaging region-

based features over frames is not wise because of pixel fluc-

tuation occurring over time due to the lossy compression, de-

grades accuracy of corresponding regions over frames. We

thus linearly combine region-based features at neighboring

frames, similarly to [2], using weights modeled by the Gaus-

sian distribution centered at the frame to compute its local

feature. With these weights, region-based features at frames

having larger distance to a frame of interest, less contribute to
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Fig. 3. Graphical representation of our introduced STCRF.

the local feature of the frame.

To compute global features, we feed a temporal segment

(sequential frames) of a video into a block-based CNN. The

global feature obtained in this way takes its temporal consis-

tency into account in its nature. As our block-based CNN,

we employ the pre-trained C3D model[5], which is known to

be effective for extracting spatiotemporal features for action

recognition. As temporal segments, each frame is expanded

into both directions in the temporal domain to obtain a 16-

frame block. For each input block, we feed it into the pre-

trained C3D model only once and assign the extracted global

feature identically to all the regions in the block. This dis-

tributes the global context to each region and, at the same

time, reduces the computational cost.

2.2. Saliency Map Computation Using RF

In computing the saliency map using STF features, we em-

ploy Random Forest (RF), similarly to [11]. This is because

saliency computation methods using a neural network require

a large dataset for training while methods using RF require

much less training dataset, and large video datasets with an-

notated ground truth for salient object detection are not pub-

licly available. Differently from feeding hand-crafted features

to RF as in [11], we feed our STF features to RF.

In our experiments, we employed RF with 500 decision

trees. In the training phase, to build the decision tree in the

forest, at each split node, we randomly chose 15 elements in

the feature vector to compute the best pair of a feature index

and a threshold.

2.3. Refinement Using SpatioTempral CRF

CRF is used to enhance accuracy (particularly in object

boundaries) of the saliency map while reducing noise, be-

cause CRF captures the spatial relationship between regions

in a frame. We extend CRF toward the temporal domain to

have ability of capturing temporal consistency of regions over

frames as well. We call our extended CRF, SpatioTemporal

CRF (STCRF in short).

STCRF graph construction: For a segmented temporal re-

gion in a block (temporal-segment) of the video, i.e., tempo-

ral superpixels, at a scale, we construct a STCRF graph. Each

vertex of the graph represents a region, and each edge repre-

sents the neighboring relationship between regions in space or

in time. Considering all the neighboring relationships, how-

ever, leads to a dense graph especially when the video vol-

ume is large, and the constructed graph becomes practically

useless in the sense of memory consumption and processing

time in the inference. We therefore restrict such edges only

that represents the adjacency relationship (cf. Fig. 3). Fur-

thermore, we partition the video into chunks of consecutive

blocks so that inference in each block is performed separately.

In the experiments, an input video is decomposed into

overlapping blocks with a fixed size where the overlapping

rate is 50%. We note that each block length is equal to about

two seconds. The saliency score of a region is refined by uni-

formly averaging saliency scores of the region over all the

blocks having the region. This averaging reduces processing

time while keeping accuracy.

Energy function for STCRF: We define the energy function

of our STCRF graph so that probabilistic inference is realized

by minimizing the function, like CRF. The energy function E
has, as its input for training, a block x and labels l = {li |
li ∈ V} where li is the label for region i and V is the set of

vertices, i.e., regions in block x. E has the unary term and

the binary term:

E(l,x;θ) =
∑
i∈V

ψu(li,x; θu) +
∑

(i,j)∈E
ψb(li, lj ,x; θb),

where ψu and ψb are the unary and binary potentials, both of

which depend on observation x. E is the set of edges of the

STCRF graph. θ = (θu, θb) is the model parameters to be

found through training.

The unary potential is defined by each region i indepen-

dently from the saliency score Si of the region:

ψu (li,x; θu) = θuSi(x).

The binary potential provides the deep feature based

smoothing-term that encourages assigning similar labels to

regions with similar deep features. Depending on spatial ad-

jacency or temporal adjacency, the potential is differently for-

mulated: with further separation of θb into θbs and θbt,

ψb (li, lj ,x; θb) =

{
θbs exp

(
−‖Fi(x)−Fj(x)‖2

2σ2

)
(i, j) ∈ Es

θbt (i, j) ∈ Et
,

where Es and Et denotes the set of edges representing spatial

adjacency and that representing temporal adjacency. Namely,

E = Es∪Et and Es∩Et = ∅. Fi(x) is the STF feature of region

i, and σ is the parameter for the distance function. Differently

from other works, our model takes advantage of contextual

deep feature smoothness to improve the final result.

In order to minimize our energy function E(l,x;θ), we

employ the Loopy Belief Propagation (LBP) inference [12],

which is a generalization of forward-backward procedure. We
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Table 1. Compared state-of-the-art methods and classification.
target hand-crafted feature deep feature

video LD[3], LGFOGR[13],

RST[2], SAG[14], STS[1]
None

image None DCL[6], DHSNet[7], ELD[8]

Table 2. Quantitative comparison with state-of-the-art methods on

three datasets, using F-measure (F-Adap) (higher is better) and Mean

Absolute Errors (MAE) (smaller is better). The best and the second

best results are shown in blue and red, respectively. Our method,

denoted by STCRF, is marked in bold.
Dataset 10-Clips SegTrack2 DAVIS
Metric F-Adap ⇑ MAE ⇓ F-Adap ⇑ MAE ⇓ F-Adap ⇑ MAE ⇓
STCRF 0.927 0.021 0.817 0.024 0.794 0.030

LD[3] 0.637 0.197 0.286 0.281 0.252 0.302

LGFOGR[13] 0.629 0.207 0.500 0.117 0.537 0.102

RST[2] 0.827 0.055 0.510 0.125 0.627 0.077

SAG[14] 0.755 0.117 0.504 0.106 0.494 0.103

STS[1] 0.591 0.177 0.471 0.147 0.379 0.183

DCL[6] 0.935 0.031 0.734 0.060 0.664 0.067

DHSNet[7] 0.923 0.022 0.733 0.050 0.715 0.048

ELD[8] 0.893 0.023 0.611 0.065 0.572 0.081

used the UGM toolbox1 for both training and inference pro-

cesses in the experiments.

3. EXPERIMENTAL RESULTS

3.1. Benchmark Datasets and Evaluation Criteria

We evaluated the performance of our method on three pub-

lic benchmark datasets: 10-Clips dataset[15], SegTrack2

dataset[16], and DAVIS dataset[17], which are with 10, 14,

and 50 video sequences, respectively. SegTrack2 and DAVIS

are challenging datasets and good platforms to evaluate the

robustness of methods because of frequent occurrences of oc-

clusions, motion blur, and appearance changes though they

are for video object segmentation but not for salient object

detection. All the datasets contain manually annotated pixel-

wise ground-truth for every frame.

In training RF and STCRF models, we took an approach

where we use all three datasets together rather than training

RF and STCRF for each dataset. This is because each dataset

is too small to train reliable models. Our approach also en-

ables the trained model not to over-fit to a specific dataset.We

mixed all three datasets into one (larger) dataset and sampled

only 10% frames for the training set and the remaining frames

for the testing set. The parameters required in our method

are two standard deviations appearing in the linear combina-

tion of region-based features and in the binary potential of the

STCRF energy function. We set them to be, respectively, 2.0
and 5.0.

We evaluated the performance using F-measure, and

Mean Absolute Error (MAE). F-measure is a balanced mea-

surement between Precision and Recall as follows: Fβ =
(1+β2)Precision×Recall

β2×Precision+Recall . We remark that we set β2 = 0.3 for

1http://www.cs.ubc.ca/ schmidtm/Software/UGM.html

F-measure so that precision is more considered. MAE, on

the other hand, is the average over the frame of pixel-wise

absolute differences between the ground truth and obtained

saliency scores.

For a threshold, we binarize the saliency map to compute

Precision and Recall at each frame in a video and then take the

average over the video. After that, the mean of the averages

over videos in a dataset is computed. F-measure is computed

from the final Precision and Recall. When binarizing results

for the comparison with the ground truth, we also used F-
Adap[18], an adaptive threshold θ = μ + η where μ and η
are the mean value and the standard deviation of the saliency

scores of the obtained map. MAE are computed in the same

way.

3.2. Comparison with the State-of-the-Arts

We compared the performance of our proposed method (de-

noted by STCRF) with several state-of-the-art methods for

salient object detection, which are classified in Table 1. We

remark that we run original codes provided by the authors

with recommended parameter settings for obtaining results.

We also note that we frame-wisely applied the methods de-

veloped for the still image to videos.

Figure 4 shows examples of obtained results. Qualita-

tive evaluation confirms that our method produces the best

results on each dataset. Our method can handle complex fore-

ground and background with different details, giving accurate

and uniform saliency assignment. In particular, object bound-

aries are clearly kept with less noise, compared with the other

methods.

In order to quantitatively evaluate the obtained results, we

first computed F-measure curves (cf. Fig.5). F-measure in-

dicates that our method significantly outperforms (is at least

comparable with) the other methods at every threshold on all

the datasets. Since 10-Clips dataset is easiest among the three,

any methods can achieve good results while the other two

datasets are challenging, meaning that the effectiveness of

methods becomes discriminative. Indeed, compared with the

second best and third best methods, DCL[6] and DHSNet[7],

our method is comparable on 10-Clips dataset and signifi-

cantly better on the other datasets.

Table 2 illustrates the evaluations in terms of F-Adap and

MAE. Our method achieves the best performance under any

metric on all the datasets. There is only one case that STCRF

is the second best method while DCL[6] is the best method on

10-Clips dataset, which is the easiest dataset among the three

datasets.

3.3. Detailed Analysis of the Proposed Method

To demonstrate the effectiveness of utilizing STF features and

STCRF, we performed experiments under four different con-

trolled settings. We compared the proposed method, denoted
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Fig. 4. Visual comparison of our method against the state-of-the-art methods. From left to right, original image and ground-truth are

followed by outputs obtained using our method (STCRF), LD[3], LGFOGR[13], RST[2], SAG[14], STS[1], DCL[6], DHSNet[7], ELD[8],

in this order. Our method surrounded with red rectangles achieves the best results.
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(a) 10-Clips Dataset (b) SegTrack2 Dataset (c) DAVIS Dataset

Fig. 5. Quantitative comparison with state-of-the-art methods on three benchmark datasets, using F-measure with different thresholds. Our

method is denoted by STCRF (thick blue).

by STF+STCRF, with three baseline methods as in Table 3.

We note that LF and STF are for the evaluation of STF against

local features alone and that STF+CRF is for the evaluation

of STCRF against CRF.

Figure 6 shows F-measure under different thresholds. We

see that STF+STCRF achieves better (at least comparable)

results than all the baseline methods on the three datasets.

The t-test with significant level 0.15 at every threshold con-

firmed that for 10-Clips and DAVIS datasets, F-measure of

STF+STCRF is significantly better than that of STF+CRF

(the best one among the baselines) for the thresholds in

[60, 90] while two methods have the same performance for

the other thresholds. For SegTrack2 dataset, the two methods

are confirmed to have the same performance for any thresh-

old.

Evaluation results using F-Adap and MAE are demon-

strated in Table 3, indicating that STF+STCRF exhibits the

best performance on all the three datasets. We also see that (1)

combing global and local features improves accuracy against

using local features alone and that (2) the refinement with

STCRF effectively works and brings more gain than that with

CRF (cf. Fig. 1). In conclusion, our (complete) method cap-

tures local and global contexts over frames to produce accu-

rate final saliency maps.

4. CONCLUSION

Differently from the still image, the video has temporal infor-

mation and how to incorporate temporal information as ef-

fectively as possible is the essential issue for dealing with

the video. This paper focused on detecting salient objects

from a video and proposed a method using STF features and

STCRF. Our method takes into account temporal information

in a video as much as possible in different ways, namely, fea-

ture extraction and the saliency computation. Our proposed

STF feature utilizes local and global context in both spatial

and temporal domains. STCRF is capable of capturing tem-

poral consistency of regions over frames and spatial relation-

ship between regions.
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